Abstract
Molecular dynamics (MD) simulations were performed using Born-Mayer-Huggins interatomic potentials with partially ionic model in order to evaluate the thermal conductivity of zirconia-based inert matrix fuel (IMF). The thermal conductivity was calculated at the equilibrium condition based on Green-Kubo theory and phenomenological equations. For ErxYyMzZr1-x-y-zO2-(x+y)/2 (where M = Ce or Pu), the thermal conductivity decreased with increase of y because of the presence of oxygen vacancies as the thermal resistance. It also slightly decreased with increase of z and temperature. However, significant difference could not be found in the thermal conductivity between Ce- and Pu-doped zirconia. The MD thermal conductivity of IMF was in good agreement with the literature data. Concerning the phenomenological coefficients, the cross-coupling effect between energy and charge fluxes was clearly observed at low z value and high temperatures for such zirconia systems.
Original language | English |
---|---|
Pages (from-to) | 309-317 |
Number of pages | 9 |
Journal | Journal of Nuclear Materials |
Volume | 352 |
Issue number | 1-3 |
DOIs | |
Publication status | Published - Jun 30 2006 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Materials Science(all)
- Nuclear Energy and Engineering