Evolution of Phosphorus-Containing Groups on Activated Carbons during Heat Treatment

Yongfang Wang, Songlin Zuo, Jianxiao Yang, Seong Ho Yoon

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Two types of activated carbons have been prepared by H3PO4 activation of lignocellulose and by H3PO4 modification of activated carbon, and then heat-treated at temperatures from 400 to 900 °C in an atmosphere of N2 or H2 to investigate the evolution of phosphorus-containing groups. Elemental analysis, X-ray photoelectron spectroscopy, 31P nuclear magnetic resonance, nitrogen adsorption, and scanning electron microscopy have been used to analyze the physicochemical properties of the activated carbons. The results show that C-O-P linkages of phosphorus-containing groups can progressively evolve into C-P-O, C3-P=O, C3-P, and eventually elemental phosphorus as a result of heat treatment. Phosphate-like groups are much more thermally stable in an N2 than in an H2 atmosphere. In N2, C-O-P linkages significantly evolve into C-P-O and C3-P=O at up to 800 °C, whereas C3-P linkages are not formed even at 900 °C. In H2, the corresponding evolution remarkably occurs at 500 °C, forming C3-P linkages and eventually elemental phosphorus. Moreover, the two activated carbons exhibit different evolution trends, suggesting that the evolution happens more easily for phosphorus-containing groups located on the edges of graphite-like crystallites than those in the lattice. Finally, we propose different evolution pathways of phosphorus-containing groups upon heat treatment in N2 and H2 atmospheres.

Original languageEnglish
Pages (from-to)3112-3122
Number of pages11
JournalLangmuir
Volume33
Issue number12
DOIs
Publication statusPublished - Mar 28 2017

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Evolution of Phosphorus-Containing Groups on Activated Carbons during Heat Treatment'. Together they form a unique fingerprint.

  • Cite this