Evolution of reverse flow in a transonic centrifugal compressor at near-surge

Kazutoyo Yamada, Masato Furukawa, Hiromitsu Arai, Dai Kanzaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

In process centrifugal compressors used in various types of plants, the compressor is the heart of a plant, and it requires high reliability. Therefore, prediction of the surge is important for centrifugal compressors. There have been numerous researches on the surge: study on improvement of surge margin, and study on the rotating stall, which is recognized as a precursor to surge, in impeller or diffuser of the compressor. However, the researches have not focused on the surge inception flow phenomena, namely detailed flow mechanism leading to the surge, although understanding of such flow phenomena is important for prediction of the surge. The paper describes in detail unsteady flow fields in a transonic centrifugal compressor at near-surge conditions. The flow fields have been investigated by detached eddy simulations (DES) using 400 million grid points. The simulation results show that the huge reverse flow region occupies the flow field near the shroud in the impeller at off-design condition, triggered by the blade stall at the tip of impeller full-blade, and it drastically develops at near-surge. It is also found that the rotating disturbance with reversed flow appears in the diffuser near the endwall at around peak pressure-rise point, and it eventually evolves into the rotating stall cell with a large reverse flow, blocking the flow inside the diffuser at near-surge.

Original languageEnglish
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850800
DOIs
Publication statusPublished - Jan 1 2017
EventASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017 - Charlotte, United States
Duration: Jun 26 2017Jun 30 2017

Publication series

NameProceedings of the ASME Turbo Expo
Volume2C-2017

Other

OtherASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
CountryUnited States
CityCharlotte
Period6/26/176/30/17

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Evolution of reverse flow in a transonic centrifugal compressor at near-surge'. Together they form a unique fingerprint.

Cite this