TY - JOUR
T1 - Evolutionary transformation of mouthparts from particle-feeding to piercing carnivory in Viper copepods
T2 - Review and 3D analyses of a key innovation using advanced imaging techniques
AU - Kaji, Tomonari
AU - Song, Chihong
AU - Murata, Kazuyoshi
AU - Nonaka, Shigenori
AU - Ogawa, Kota
AU - Kondo, Yusuke
AU - Ohtsuka, Susumu
AU - Palmer, A. Richard
N1 - Funding Information:
We thank the captain and crew of the TRV Toyoshio-maru, Hiroshima University for safe voyage. We thank the copepod research team from Hiroshima University for field assistance and the Electron Microscopy Group in the National Institute for Physiological Sciences for technical support. We thank C. S. Wirkner (Universität Rostock, UR) and J. Runge (UR) for guidance of morphological description and assistance of creating 3D-PDFs. TK especially thanks S. Richter (UR) for facilitating extended stays and imaging work in Rostock. This study was partially supported by a grant-in-aid KAKENHI (No. 16 K07825) awarded to SO. This work was supported by NIBB Collaborative Research Program for Integrative Imaging (18-526) to ARP.
Funding Information:
This research was funded by the Cooperative Study Program of National Institute for Physiological Sciences No.2017–235, and Natural Sciences and Engineering Research Council of Canada Discovery Grant RGPIN 04863 to ARP.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/8/22
Y1 - 2019/8/22
N2 - Background: Novel feeding adaptations often facilitate adaptive radiation and diversification. But the evolutionary origins of such feeding adaptations can be puzzling if they require concordant change in multiple component parts. Pelagic, heterorhabdid copepods (Calanoida) exhibit diverse feeding behaviors that range from simple particle feeding to a highly specialized form of carnivory involving piercing mouthparts that likely inject venom. We review the evolutionary history of heterorhabdid copepods and add new high-resolution, 3D anatomical analyses of the muscular system, glands and gland openings associated with this remarkable evolutionary transformation. Results: We examined four heterorhabdid copepods with different feeding modes: one primitive particle-feeder (Disseta palumbii), one derived and specialized carnivore (Heterorhabdus subspinifrons), and two intermediate taxa (Mesorhabdus gracilis and Heterostylites longicornis). We used two advanced, high-resolution microscopic techniques - serial block-face scanning electron microscopy and two-photon excitation microscopy - to visualize mouthpart form and internal anatomy at unprecedented nanometer resolution. Interactive 3D graphical visualizations allowed putative homologues of muscles and gland cells to be identified with confidence and traced across the evolutionary transformation from particle feeding to piercing carnivory. Notable changes included: a) addition of new gland cells, b) enlargement of some (venom producing?) glands, c) repositioning of gland openings associated with hollow piercing fangs on the mandibles, d) repurposing of some mandibular-muscle function to include gland-squeezing, and e) addition of new muscles that may aid venom injection exclusively in the most specialized piercing species. In addition, live video recording of all four species revealed mandibular blade movements coupled to cyclic contraction of some muscles connected to the esophagus. These behavioral and 3D morphological observations revealed a novel injection system in H. subspinifrons associated with piercing (envenomating?) carnivory. Conclusions: Collectively, these results suggest that subtle changes in mandibular tooth form, and muscle and gland form and location, facilitated the evolution of a novel, piercing mode of feeding that accelerated diversification of the genus Heterorhabdus. They also highlight the value of interactive 3D animations for understanding evolutionary transformations of complex, multicomponent morphological systems.
AB - Background: Novel feeding adaptations often facilitate adaptive radiation and diversification. But the evolutionary origins of such feeding adaptations can be puzzling if they require concordant change in multiple component parts. Pelagic, heterorhabdid copepods (Calanoida) exhibit diverse feeding behaviors that range from simple particle feeding to a highly specialized form of carnivory involving piercing mouthparts that likely inject venom. We review the evolutionary history of heterorhabdid copepods and add new high-resolution, 3D anatomical analyses of the muscular system, glands and gland openings associated with this remarkable evolutionary transformation. Results: We examined four heterorhabdid copepods with different feeding modes: one primitive particle-feeder (Disseta palumbii), one derived and specialized carnivore (Heterorhabdus subspinifrons), and two intermediate taxa (Mesorhabdus gracilis and Heterostylites longicornis). We used two advanced, high-resolution microscopic techniques - serial block-face scanning electron microscopy and two-photon excitation microscopy - to visualize mouthpart form and internal anatomy at unprecedented nanometer resolution. Interactive 3D graphical visualizations allowed putative homologues of muscles and gland cells to be identified with confidence and traced across the evolutionary transformation from particle feeding to piercing carnivory. Notable changes included: a) addition of new gland cells, b) enlargement of some (venom producing?) glands, c) repositioning of gland openings associated with hollow piercing fangs on the mandibles, d) repurposing of some mandibular-muscle function to include gland-squeezing, and e) addition of new muscles that may aid venom injection exclusively in the most specialized piercing species. In addition, live video recording of all four species revealed mandibular blade movements coupled to cyclic contraction of some muscles connected to the esophagus. These behavioral and 3D morphological observations revealed a novel injection system in H. subspinifrons associated with piercing (envenomating?) carnivory. Conclusions: Collectively, these results suggest that subtle changes in mandibular tooth form, and muscle and gland form and location, facilitated the evolution of a novel, piercing mode of feeding that accelerated diversification of the genus Heterorhabdus. They also highlight the value of interactive 3D animations for understanding evolutionary transformations of complex, multicomponent morphological systems.
UR - http://www.scopus.com/inward/record.url?scp=85071306741&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071306741&partnerID=8YFLogxK
U2 - 10.1186/s12983-019-0308-y
DO - 10.1186/s12983-019-0308-y
M3 - Article
AN - SCOPUS:85071306741
SN - 1742-9994
VL - 16
JO - Frontiers in Zoology
JF - Frontiers in Zoology
IS - 1
M1 - 35
ER -