Exact and approximation algorithms for weighted matroid intersection

Chien Chung Huang, Naonori Kakimura, Naoyuki Kamiyama

Research output: Contribution to journalArticle

Abstract

In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 - ϵ) -approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposition technique: we decompose an instance of the weighted matroid intersection problem into a set of instances of the unweighted matroid intersection problem. The computational advantage of this approach is that we can make use of fast unweighted matroid intersection algorithms as a black box for designing algorithms. More precisely, we show that we can solve the weighted matroid intersection problem via solving W instances of the unweighted matroid intersection problem, where W is the largest given weight, assuming that all given weights are integral. Furthermore, we can find a (1 - ϵ) -approximate solution via solving O(ϵ- 1log r) instances of the unweighted matroid intersection problem, where r is the smaller rank of the two given matroids. Our algorithms make use of the weight-splitting approach of Frank (J Algorithms 2(4):328–336, 1981) and the geometric scaling scheme of Duan and Pettie (J ACM 61(1):1, 2014). Our algorithms are simple and flexible: they can be adapted to special cases of the weighted matroid intersection problem, using specialized unweighted matroid intersection algorithms. In addition, we give a further application of our decomposition technique: we solve efficiently the rank-maximal matroid intersection problem, a problem motivated by matching problems under preferences.

Original languageEnglish
Pages (from-to)85-112
Number of pages28
JournalMathematical Programming
Volume177
Issue number1-2
DOIs
Publication statusPublished - Sep 1 2019

Fingerprint

Matroid Intersection
Approximation algorithms
Exact Algorithms
Approximation Algorithms
Decomposition Techniques
Approximate Solution
Maximal Rank
Decomposition
Matching Problem
Matroid
Black Box
Scaling

All Science Journal Classification (ASJC) codes

  • Software
  • Mathematics(all)

Cite this

Exact and approximation algorithms for weighted matroid intersection. / Huang, Chien Chung; Kakimura, Naonori; Kamiyama, Naoyuki.

In: Mathematical Programming, Vol. 177, No. 1-2, 01.09.2019, p. 85-112.

Research output: Contribution to journalArticle

Huang, Chien Chung ; Kakimura, Naonori ; Kamiyama, Naoyuki. / Exact and approximation algorithms for weighted matroid intersection. In: Mathematical Programming. 2019 ; Vol. 177, No. 1-2. pp. 85-112.
@article{268a443f45534b4bad290b0a43e9450d,
title = "Exact and approximation algorithms for weighted matroid intersection",
abstract = "In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 - ϵ) -approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposition technique: we decompose an instance of the weighted matroid intersection problem into a set of instances of the unweighted matroid intersection problem. The computational advantage of this approach is that we can make use of fast unweighted matroid intersection algorithms as a black box for designing algorithms. More precisely, we show that we can solve the weighted matroid intersection problem via solving W instances of the unweighted matroid intersection problem, where W is the largest given weight, assuming that all given weights are integral. Furthermore, we can find a (1 - ϵ) -approximate solution via solving O(ϵ- 1log r) instances of the unweighted matroid intersection problem, where r is the smaller rank of the two given matroids. Our algorithms make use of the weight-splitting approach of Frank (J Algorithms 2(4):328–336, 1981) and the geometric scaling scheme of Duan and Pettie (J ACM 61(1):1, 2014). Our algorithms are simple and flexible: they can be adapted to special cases of the weighted matroid intersection problem, using specialized unweighted matroid intersection algorithms. In addition, we give a further application of our decomposition technique: we solve efficiently the rank-maximal matroid intersection problem, a problem motivated by matching problems under preferences.",
author = "Huang, {Chien Chung} and Naonori Kakimura and Naoyuki Kamiyama",
year = "2019",
month = "9",
day = "1",
doi = "10.1007/s10107-018-1260-x",
language = "English",
volume = "177",
pages = "85--112",
journal = "Mathematical Programming",
issn = "0025-5610",
publisher = "Springer-Verlag GmbH and Co. KG",
number = "1-2",

}

TY - JOUR

T1 - Exact and approximation algorithms for weighted matroid intersection

AU - Huang, Chien Chung

AU - Kakimura, Naonori

AU - Kamiyama, Naoyuki

PY - 2019/9/1

Y1 - 2019/9/1

N2 - In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 - ϵ) -approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposition technique: we decompose an instance of the weighted matroid intersection problem into a set of instances of the unweighted matroid intersection problem. The computational advantage of this approach is that we can make use of fast unweighted matroid intersection algorithms as a black box for designing algorithms. More precisely, we show that we can solve the weighted matroid intersection problem via solving W instances of the unweighted matroid intersection problem, where W is the largest given weight, assuming that all given weights are integral. Furthermore, we can find a (1 - ϵ) -approximate solution via solving O(ϵ- 1log r) instances of the unweighted matroid intersection problem, where r is the smaller rank of the two given matroids. Our algorithms make use of the weight-splitting approach of Frank (J Algorithms 2(4):328–336, 1981) and the geometric scaling scheme of Duan and Pettie (J ACM 61(1):1, 2014). Our algorithms are simple and flexible: they can be adapted to special cases of the weighted matroid intersection problem, using specialized unweighted matroid intersection algorithms. In addition, we give a further application of our decomposition technique: we solve efficiently the rank-maximal matroid intersection problem, a problem motivated by matching problems under preferences.

AB - In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 - ϵ) -approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposition technique: we decompose an instance of the weighted matroid intersection problem into a set of instances of the unweighted matroid intersection problem. The computational advantage of this approach is that we can make use of fast unweighted matroid intersection algorithms as a black box for designing algorithms. More precisely, we show that we can solve the weighted matroid intersection problem via solving W instances of the unweighted matroid intersection problem, where W is the largest given weight, assuming that all given weights are integral. Furthermore, we can find a (1 - ϵ) -approximate solution via solving O(ϵ- 1log r) instances of the unweighted matroid intersection problem, where r is the smaller rank of the two given matroids. Our algorithms make use of the weight-splitting approach of Frank (J Algorithms 2(4):328–336, 1981) and the geometric scaling scheme of Duan and Pettie (J ACM 61(1):1, 2014). Our algorithms are simple and flexible: they can be adapted to special cases of the weighted matroid intersection problem, using specialized unweighted matroid intersection algorithms. In addition, we give a further application of our decomposition technique: we solve efficiently the rank-maximal matroid intersection problem, a problem motivated by matching problems under preferences.

UR - http://www.scopus.com/inward/record.url?scp=85046042658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046042658&partnerID=8YFLogxK

U2 - 10.1007/s10107-018-1260-x

DO - 10.1007/s10107-018-1260-x

M3 - Article

AN - SCOPUS:85046042658

VL - 177

SP - 85

EP - 112

JO - Mathematical Programming

JF - Mathematical Programming

SN - 0025-5610

IS - 1-2

ER -