Expansion and differentiation of human iPS cells in a three-dimensional culture using hollow fibers and separation of the specific population by magnetic-activated cell sorting

Research output: Contribution to journalArticle

Abstract

In order to employ pluripotent stem cells in the field of regenerative medicine, it is necessary to establish a large-scale culture system for cell differentiation. We have developed a novel three-dimensional method for culturing human induced pluripotent stem (iPS) cells, using hollow fibers (HFs). The cells immobilized inside HFs can proliferate and form multicellular aggregates, capable of achieving a high cell density and promoting further spontaneous cell differentiation. We first cultured human iPS cells for 7 days under conditions that maintained their undifferentiated state and then switched the culture conditions to allow spontaneous cell differentiation. In the 7-day undifferentiated culture, a high cell density of approximately 10-fold that of the initial seeding density was achieved. The upregulation of gene markers for differentiation such as CXCR4 or SOX17 was observed in the culture of differentiated cells. Expression of the lineage-specific cell-surface marker CXCR4 was about 30% at day 5 in the differentiation culture, which was 2-fold higher than that in the traditional monolayer culture. After HF culture, we obtained the CXCR4-positive cell population and performed monolayer culture for further differentiation of the hepatic lineage. In the CXCR4-positive cell population, the expression levels of a few liver-specific gene markers tended to increase. However, there were no significant differences between the separation and non-separation groups, which indicates the need for refinement of the cell separation process and cell maturation procedure in future studies. In conclusion, the HF culture method has potential for achieving the large-scale culturing and spontaneous differentiation of human iPS cells.

Original languageEnglish
Pages (from-to)480-486
Number of pages7
JournalJournal of Bioscience and Bioengineering
Volume128
Issue number4
DOIs
Publication statusPublished - Oct 2019

Fingerprint

Induced Pluripotent Stem Cells
Stem cells
Sorting
Cell culture
Cells
Cell Differentiation
Fibers
Population
Monolayers
Cell Count
Genes
Immobilized Cells
Pluripotent Stem Cells
Regenerative Medicine
Cell Separation
Liver
Differentiation Antigens
Up-Regulation
Cell Culture Techniques

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Cite this

@article{6b8eb0fd3ce84a43bd219f17a2ff9512,
title = "Expansion and differentiation of human iPS cells in a three-dimensional culture using hollow fibers and separation of the specific population by magnetic-activated cell sorting",
abstract = "In order to employ pluripotent stem cells in the field of regenerative medicine, it is necessary to establish a large-scale culture system for cell differentiation. We have developed a novel three-dimensional method for culturing human induced pluripotent stem (iPS) cells, using hollow fibers (HFs). The cells immobilized inside HFs can proliferate and form multicellular aggregates, capable of achieving a high cell density and promoting further spontaneous cell differentiation. We first cultured human iPS cells for 7 days under conditions that maintained their undifferentiated state and then switched the culture conditions to allow spontaneous cell differentiation. In the 7-day undifferentiated culture, a high cell density of approximately 10-fold that of the initial seeding density was achieved. The upregulation of gene markers for differentiation such as CXCR4 or SOX17 was observed in the culture of differentiated cells. Expression of the lineage-specific cell-surface marker CXCR4 was about 30{\%} at day 5 in the differentiation culture, which was 2-fold higher than that in the traditional monolayer culture. After HF culture, we obtained the CXCR4-positive cell population and performed monolayer culture for further differentiation of the hepatic lineage. In the CXCR4-positive cell population, the expression levels of a few liver-specific gene markers tended to increase. However, there were no significant differences between the separation and non-separation groups, which indicates the need for refinement of the cell separation process and cell maturation procedure in future studies. In conclusion, the HF culture method has potential for achieving the large-scale culturing and spontaneous differentiation of human iPS cells.",
author = "Sakiko Matsushita and Toshihisa Kajiwara and Hiroshi Mizumoto",
year = "2019",
month = "10",
doi = "10.1016/j.jbiosc.2019.03.014",
language = "English",
volume = "128",
pages = "480--486",
journal = "Journal of Bioscience and Bioengineering",
issn = "1389-1723",
publisher = "The Society for Biotechnology, Japan",
number = "4",

}

TY - JOUR

T1 - Expansion and differentiation of human iPS cells in a three-dimensional culture using hollow fibers and separation of the specific population by magnetic-activated cell sorting

AU - Matsushita, Sakiko

AU - Kajiwara, Toshihisa

AU - Mizumoto, Hiroshi

PY - 2019/10

Y1 - 2019/10

N2 - In order to employ pluripotent stem cells in the field of regenerative medicine, it is necessary to establish a large-scale culture system for cell differentiation. We have developed a novel three-dimensional method for culturing human induced pluripotent stem (iPS) cells, using hollow fibers (HFs). The cells immobilized inside HFs can proliferate and form multicellular aggregates, capable of achieving a high cell density and promoting further spontaneous cell differentiation. We first cultured human iPS cells for 7 days under conditions that maintained their undifferentiated state and then switched the culture conditions to allow spontaneous cell differentiation. In the 7-day undifferentiated culture, a high cell density of approximately 10-fold that of the initial seeding density was achieved. The upregulation of gene markers for differentiation such as CXCR4 or SOX17 was observed in the culture of differentiated cells. Expression of the lineage-specific cell-surface marker CXCR4 was about 30% at day 5 in the differentiation culture, which was 2-fold higher than that in the traditional monolayer culture. After HF culture, we obtained the CXCR4-positive cell population and performed monolayer culture for further differentiation of the hepatic lineage. In the CXCR4-positive cell population, the expression levels of a few liver-specific gene markers tended to increase. However, there were no significant differences between the separation and non-separation groups, which indicates the need for refinement of the cell separation process and cell maturation procedure in future studies. In conclusion, the HF culture method has potential for achieving the large-scale culturing and spontaneous differentiation of human iPS cells.

AB - In order to employ pluripotent stem cells in the field of regenerative medicine, it is necessary to establish a large-scale culture system for cell differentiation. We have developed a novel three-dimensional method for culturing human induced pluripotent stem (iPS) cells, using hollow fibers (HFs). The cells immobilized inside HFs can proliferate and form multicellular aggregates, capable of achieving a high cell density and promoting further spontaneous cell differentiation. We first cultured human iPS cells for 7 days under conditions that maintained their undifferentiated state and then switched the culture conditions to allow spontaneous cell differentiation. In the 7-day undifferentiated culture, a high cell density of approximately 10-fold that of the initial seeding density was achieved. The upregulation of gene markers for differentiation such as CXCR4 or SOX17 was observed in the culture of differentiated cells. Expression of the lineage-specific cell-surface marker CXCR4 was about 30% at day 5 in the differentiation culture, which was 2-fold higher than that in the traditional monolayer culture. After HF culture, we obtained the CXCR4-positive cell population and performed monolayer culture for further differentiation of the hepatic lineage. In the CXCR4-positive cell population, the expression levels of a few liver-specific gene markers tended to increase. However, there were no significant differences between the separation and non-separation groups, which indicates the need for refinement of the cell separation process and cell maturation procedure in future studies. In conclusion, the HF culture method has potential for achieving the large-scale culturing and spontaneous differentiation of human iPS cells.

UR - http://www.scopus.com/inward/record.url?scp=85064081281&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064081281&partnerID=8YFLogxK

U2 - 10.1016/j.jbiosc.2019.03.014

DO - 10.1016/j.jbiosc.2019.03.014

M3 - Article

C2 - 30982708

AN - SCOPUS:85064081281

VL - 128

SP - 480

EP - 486

JO - Journal of Bioscience and Bioengineering

JF - Journal of Bioscience and Bioengineering

SN - 1389-1723

IS - 4

ER -