TY - JOUR
T1 - Experimental and analytical studies on contact irreversible electroporation for superficial tumor treatment
AU - Kurata, Kosaku
AU - Ueno, Ryo
AU - Matsushita, Masahiro
AU - Fukunaga, Takanobu
AU - Takamatsu, Hiroshi
PY - 2013
Y1 - 2013
N2 - Irreversible electroporation (IRE) is attracting much attention as a less-invasive therapy to ablate abnormal tissues. With a pair of electrodes inserted into the tissue, the IRE perforates the targeted cells non-thermally by a train of intensive electric pulses that exceeds a certain threshold. Since only the cells are necrotized percutaneously, the extracellular matrix is kept intact in the IRE, which is favorable for prompt tissue regeneration. In this study, we demonstrated that the IRE is also applicable to treat superficial targets such as melanoma, nevus, and tumors on gastrointestinal surface. A pair of 1-mm dia. stainless steel rods fixed 5 mm apart in an acrylic plate was contacted on an agarose gel containing fibroblasts. A sequence of 15 to 90 pulses of 1 kV was then applied to the gel via electrodes. All pulses were 10 μs in length and oscillated at 100 ms intervals. The boundary between dead and alive cell regions was determined at the surface and vertical cross section by using fluorescent staining. The necrotic cell area was also predicted by a numerical solution to the equation of electric field. Those determined with an assumption that the potential difference of 1 V between the cell membrane induces irreversible cell breakdown agreed well with the necrotic cell area and maximal depth in the experiment at low pulse number. However, the experiment showed the increase in the necrotic area with increasing the pulse repetition. Since application of multiple pulses perforates the highly resistive cell membrane, our study indicated the importance of taking into account the change in the electrical properties due to cell destruction.
AB - Irreversible electroporation (IRE) is attracting much attention as a less-invasive therapy to ablate abnormal tissues. With a pair of electrodes inserted into the tissue, the IRE perforates the targeted cells non-thermally by a train of intensive electric pulses that exceeds a certain threshold. Since only the cells are necrotized percutaneously, the extracellular matrix is kept intact in the IRE, which is favorable for prompt tissue regeneration. In this study, we demonstrated that the IRE is also applicable to treat superficial targets such as melanoma, nevus, and tumors on gastrointestinal surface. A pair of 1-mm dia. stainless steel rods fixed 5 mm apart in an acrylic plate was contacted on an agarose gel containing fibroblasts. A sequence of 15 to 90 pulses of 1 kV was then applied to the gel via electrodes. All pulses were 10 μs in length and oscillated at 100 ms intervals. The boundary between dead and alive cell regions was determined at the surface and vertical cross section by using fluorescent staining. The necrotic cell area was also predicted by a numerical solution to the equation of electric field. Those determined with an assumption that the potential difference of 1 V between the cell membrane induces irreversible cell breakdown agreed well with the necrotic cell area and maximal depth in the experiment at low pulse number. However, the experiment showed the increase in the necrotic area with increasing the pulse repetition. Since application of multiple pulses perforates the highly resistive cell membrane, our study indicated the importance of taking into account the change in the electrical properties due to cell destruction.
UR - http://www.scopus.com/inward/record.url?scp=84891759103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891759103&partnerID=8YFLogxK
U2 - 10.1299/jbse.8.306
DO - 10.1299/jbse.8.306
M3 - Article
AN - SCOPUS:84891759103
SN - 1880-9863
VL - 8
SP - 306
EP - 318
JO - Journal of Biomechanical Science and Engineering
JF - Journal of Biomechanical Science and Engineering
IS - 4
ER -