TY - JOUR
T1 - Experimental investigation of a mechanical vapour compression chiller at elevated chilled water temperatures
AU - Thu, Kyaw
AU - Saththasivam, Jayaprakash
AU - Saha, Bidyut Baran
AU - Chua, Kian Jon
AU - Srinivasa Murthy, S.
AU - Ng, Kim Choon
N1 - Funding Information:
The authors gratefully acknowledge the Kyushu University Program for Leading Graduate School, Green Asia Education Center and the National Research Foundation (NRF), Singapore, under the research grant (R-265-000-466-281) for their financial support to conduct this study.
Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017
Y1 - 2017
N2 - The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperatures for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7–17 °C) at various coolant temperatures (28–32 °C) and flow rates (ΔT = 4 and 5 °C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17 °C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37–40% and 40–45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.
AB - The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperatures for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7–17 °C) at various coolant temperatures (28–32 °C) and flow rates (ΔT = 4 and 5 °C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17 °C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37–40% and 40–45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.
UR - http://www.scopus.com/inward/record.url?scp=85019564785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019564785&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2017.05.091
DO - 10.1016/j.applthermaleng.2017.05.091
M3 - Article
AN - SCOPUS:85019564785
VL - 123
SP - 226
EP - 233
JO - Journal of Heat Recovery Systems
JF - Journal of Heat Recovery Systems
SN - 1359-4311
ER -