Experimental investigation on self-leveling behavior in debris beds

Bin Zhang, Tetsushi Harada, Daisuke Hirahara, Tatsuya Matsumoto, Koji Morita, Kenji Fukuda, Hidemasa Yamano, Tohru Suzuki, Yoshiharu Tobita

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)


During a hypothetical core-disruptive accident in a sodium-cooled fast breeder reactor, degraded core materials can form debris beds on the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of core material pool. Coolant boiling may lead ultimately to leveling of the debris bed that is crucial to the relocation of molten core and heat-removal capability of the debris bed. In the present study, we elected to use depressurization boiling to simulate an axially increasing void distribution in the debris bed. Bottom-heating boiling was also chosen to confirm that characteristics of the self-leveling process do not depend on the boiling mode. Particle size (between 0.5 and 6 mm), shape (spherical and non-spherical), bed volume (between 5 and 8 l) and density (namely of alumina, zirconia, lead and stainless steel) along with boiling intensity and total volume were taken as experimental parameters to obtain the general characteristics of the self-leveling process. A series of experiments with simulant materials were conducted and analyzed in detail. The good concordance of the transient processes obtained from the different boiling methods sufficiently demonstrates that the present results obtained using the depressurization boiling method exhibit these general self-leveling characteristics. Detailed comparisons of deduced time variations of the inclination angle provides qualitative tendencies based on the experimental parameters considered influential to self-leveling behavior. The rationale behind the definition introduced for equivalent power density is also presented.

Original languageEnglish
Pages (from-to)366-377
Number of pages12
JournalNuclear Engineering and Design
Issue number1
Publication statusPublished - Jan 2011

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Safety, Risk, Reliability and Quality
  • Waste Management and Disposal
  • Mechanical Engineering


Dive into the research topics of 'Experimental investigation on self-leveling behavior in debris beds'. Together they form a unique fingerprint.

Cite this