Experimental validation of effectiveness of rod-type burnable poisons on reactivity control in HTTR

Minoru Goto, Shusaku Shiozawa, Nozomu Fujimoto, Shigeaki Nakagawa, Yasuyuki Nakao

Research output: Contribution to journalArticle

Abstract

In block-type high temperature gas-cooled reactors (HTGRs), insertion depth of control rods (CRs) into a core should be retained shallow to keep fuel temperature below 1495 °C through a burnup period, and hence excess reactivity should be reduced through a different method. Loading burnable poisons (BPs) into the core is considered as a method to resolve this problem as in case of light water reactors (LWRs). Effectiveness of BPs on reactivity control in LWRs has been validated by experimental data, however, this has not been done yet for HTGRs, because there was not enough burnup characteristics data for HTGRs required for the validation. The High Temperature Engineering Test Reactor (HTTR) is a block-type HTGRs and it adopts rod-type BPs to control reactivity. The HTTR has been operated up to middle burnup, and thereby the experimental data was expected to show effect of the BPs on the reactivity control. Hence, in order to validate effectiveness of rod-type BPs on reactivity control in the HTTR, we investigated on the HTTR results whether the BPs have functioned as designed. As a result, the CRs insertion depth has been retained shallow within allowable range, and then effectiveness of rod-type BPs on reactivity control in the HTTR was validated.

Original languageEnglish
Pages (from-to)2994-2998
Number of pages5
JournalNuclear Engineering and Design
Volume240
Issue number10
DOIs
Publication statusPublished - Oct 1 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Safety, Risk, Reliability and Quality
  • Waste Management and Disposal
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Experimental validation of effectiveness of rod-type burnable poisons on reactivity control in HTTR'. Together they form a unique fingerprint.

  • Cite this