Expression and effects of epidermal growth factor on human periodontal ligament cells

Yoko Teramatsu, Hidefumi Maeda, Hideki Sugii, Atsushi Tomokiyo, Sayuri Hamano, Naohisa Wada, Asuka Yuda, Naohide Yamamoto, Katsuaki Koori, Akifumi Akamine

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.

Original languageEnglish
Pages (from-to)633-643
Number of pages11
JournalCell and tissue research
Volume357
Issue number3
DOIs
Publication statusPublished - Sep 1 2014

All Science Journal Classification (ASJC) codes

  • Pathology and Forensic Medicine
  • Histology
  • Cell Biology

Fingerprint Dive into the research topics of 'Expression and effects of epidermal growth factor on human periodontal ligament cells'. Together they form a unique fingerprint.

  • Cite this