Expression of the Sendai (murine parainfluenza) virus C protein alleviates restriction of measles virus growth in mouse cells

Masaharu Iwasaki, Yusuke Yanagi

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/β signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line muchmore efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.

Original languageEnglish
Pages (from-to)15384-15389
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume108
Issue number37
DOIs
Publication statusPublished - Sep 13 2011

Fingerprint

Paramyxoviridae Infections
Measles virus
Protein C
Viruses
Growth
Lymphocyte Activation
Cell Line
Host Specificity
Measles
Mutant Proteins
Virus Replication
Primates
Transgenic Mice
Transfection
Animal Models
Sendai virus nonstructural C protein
Genome
RNA

All Science Journal Classification (ASJC) codes

  • General

Cite this

@article{95f5e2a10d2b4d2ea3624830639b9b33,
title = "Expression of the Sendai (murine parainfluenza) virus C protein alleviates restriction of measles virus growth in mouse cells",
abstract = "Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/β signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line muchmore efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.",
author = "Masaharu Iwasaki and Yusuke Yanagi",
year = "2011",
month = "9",
day = "13",
doi = "10.1073/pnas.1107382108",
language = "English",
volume = "108",
pages = "15384--15389",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "37",

}

TY - JOUR

T1 - Expression of the Sendai (murine parainfluenza) virus C protein alleviates restriction of measles virus growth in mouse cells

AU - Iwasaki, Masaharu

AU - Yanagi, Yusuke

PY - 2011/9/13

Y1 - 2011/9/13

N2 - Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/β signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line muchmore efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.

AB - Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/β signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line muchmore efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.

UR - http://www.scopus.com/inward/record.url?scp=80053075924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053075924&partnerID=8YFLogxK

U2 - 10.1073/pnas.1107382108

DO - 10.1073/pnas.1107382108

M3 - Article

C2 - 21896767

AN - SCOPUS:80053075924

VL - 108

SP - 15384

EP - 15389

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 37

ER -