Extracting worst case perturbations for robustness analysis of parameter-dependent LTI systems

Yusuke Onishi, Yoshio Ebihara, Tomomichi Hagiwara

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this paper, we deal with robust performance analysis problems of LTI systems depending on uncertain parameters. By following existing scaling-based approaches, we firstly derive computationally tractable parameter-independent LMI conditions to assess the robust performance, which are conservative in general. What makes the present approach novel is to take the dual of those LMIs so that we can conclude the exactness of the analysis results. More precisely, we clarify that if the computed dual solution satisfies a certain rank condition, then we can ensure that the robust performance is never attained. In particular, we can extract the worst case perturbation that violates the underlying performance. Thus we provide viable tests for the exactness verification of LMI-based robust performance analysis.

Original languageEnglish
Title of host publicationProceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
Edition1 PART 1
DOIs
Publication statusPublished - Dec 1 2008
Externally publishedYes
Event17th World Congress, International Federation of Automatic Control, IFAC - Seoul, Korea, Republic of
Duration: Jul 6 2008Jul 11 2008

Publication series

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Number1 PART 1
Volume17
ISSN (Print)1474-6670

Other

Other17th World Congress, International Federation of Automatic Control, IFAC
CountryKorea, Republic of
CitySeoul
Period7/6/087/11/08

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering

Cite this

Onishi, Y., Ebihara, Y., & Hagiwara, T. (2008). Extracting worst case perturbations for robustness analysis of parameter-dependent LTI systems. In Proceedings of the 17th World Congress, International Federation of Automatic Control, IFAC (1 PART 1 ed.). (IFAC Proceedings Volumes (IFAC-PapersOnline); Vol. 17, No. 1 PART 1). https://doi.org/10.3182/20080706-5-KR-1001.2982