Extraction operation know-how from historical operation data - using characterization method of time series data and data mining method

Kazuhiro Takeda, Yoshifumu Tsuge, Hisayoshi Matsuyama

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

In these days, it is very difficult to hand down experts' operation know-how to beginner, because of operation technique of a large and highly complex plant and reducing operators. On the other hand, data mining methods (See5, naive bayes, k-nearest neighbor, and so on) has been proposed as knowledge discovering methods from a huge amount of data. See5 outputs decision trees or IF-THEN rules as data mining results. However, See5 cannot recognize data as time series. In this study, an extraction method of experts' operation know-how from historical operation data is proposed. Furthermore efficiencies of the proposed method are demonstrated by numerical experiments using a dynamic simulator.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsMircea Gh. Negoita, Robert J. Howlett, Lakhmi C. Jain
PublisherSpringer Verlag
Pages375-381
Number of pages7
ISBN (Print)9783540232063
DOIs
Publication statusPublished - 2004
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3214
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Extraction operation know-how from historical operation data - using characterization method of time series data and data mining method'. Together they form a unique fingerprint.

Cite this