Extraordinary activity of nanodispersed bimetallic nife phosphide catalysts for the conversion of a biomass model compound

S. Ted Oyama, Ara Cho, Jieun Shin, Atsushi Takagaki, Ryuji Kikuchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The present work deals with the development of new catalysts, transition metal phosphides, which have outstanding activity for hydrodeoxygenation of pyrolysis oil. The study is significant as it leads to the production of high-energy content liquid fuels. Pyrolysis of biomass is a thermal conversion process that produces liquid fuels and chemicals, and is a promising technology to compete with and eventually replace non-renewable fossil fuels. The model substrate 2-methyltetrahydrofuran is studied by kinetic and spectroscopic methods to uncover the important steps involved in the reaction. On the most active catalyst, Ni2P, the studies indicate that the rate-determining step involves a single Ni atom. In situ infrared measurements are used to identify adsorbed reactive intermediates during reaction and give support for the reaction mechanism. The studies are important because they allow understanding of reactivity at a nanoscale level and lead to the design of more active catalysts.

Original languageEnglish
Title of host publicationTechnical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013
Pages444-447
Number of pages4
Volume1
Publication statusPublished - Aug 9 2013
Externally publishedYes
EventNanotechnology 2013: Advanced Materials, CNTs, Particles, Films and Composites - 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013 - Washington, DC, United States
Duration: May 12 2013May 16 2013

Other

OtherNanotechnology 2013: Advanced Materials, CNTs, Particles, Films and Composites - 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013
Country/TerritoryUnited States
CityWashington, DC
Period5/12/135/16/13

All Science Journal Classification (ASJC) codes

  • Biotechnology

Fingerprint

Dive into the research topics of 'Extraordinary activity of nanodispersed bimetallic nife phosphide catalysts for the conversion of a biomass model compound'. Together they form a unique fingerprint.

Cite this