Extremal values of double and triple trigonometric functions

Nobushige Kurokawa, Masato Wakayama

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We study the extremal values of the double and the triple trigonometric functions defined via the infinite products. In particular, we show that the extremal values of the triple sine function are intimately related to the mysterious value ζ(3). The results also allow us to sketch their graphs.

Original languageEnglish
Pages (from-to)141-166
Number of pages26
JournalKyushu Journal of Mathematics
Volume58
Issue number1
DOIs
Publication statusPublished - Jan 1 2004

Fingerprint

Circular function
Infinite product
Graph in graph theory

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Extremal values of double and triple trigonometric functions. / Kurokawa, Nobushige; Wakayama, Masato.

In: Kyushu Journal of Mathematics, Vol. 58, No. 1, 01.01.2004, p. 141-166.

Research output: Contribution to journalArticle

@article{b59c1e51d0984d7a920271b0668b2643,
title = "Extremal values of double and triple trigonometric functions",
abstract = "We study the extremal values of the double and the triple trigonometric functions defined via the infinite products. In particular, we show that the extremal values of the triple sine function are intimately related to the mysterious value ζ(3). The results also allow us to sketch their graphs.",
author = "Nobushige Kurokawa and Masato Wakayama",
year = "2004",
month = "1",
day = "1",
doi = "10.2206/kyushujm.58.141",
language = "English",
volume = "58",
pages = "141--166",
journal = "Kyushu Journal of Mathematics",
issn = "1340-6116",
publisher = "Kyushu University, Faculty of Science",
number = "1",

}

TY - JOUR

T1 - Extremal values of double and triple trigonometric functions

AU - Kurokawa, Nobushige

AU - Wakayama, Masato

PY - 2004/1/1

Y1 - 2004/1/1

N2 - We study the extremal values of the double and the triple trigonometric functions defined via the infinite products. In particular, we show that the extremal values of the triple sine function are intimately related to the mysterious value ζ(3). The results also allow us to sketch their graphs.

AB - We study the extremal values of the double and the triple trigonometric functions defined via the infinite products. In particular, we show that the extremal values of the triple sine function are intimately related to the mysterious value ζ(3). The results also allow us to sketch their graphs.

UR - http://www.scopus.com/inward/record.url?scp=85010089416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85010089416&partnerID=8YFLogxK

U2 - 10.2206/kyushujm.58.141

DO - 10.2206/kyushujm.58.141

M3 - Article

AN - SCOPUS:85010089416

VL - 58

SP - 141

EP - 166

JO - Kyushu Journal of Mathematics

JF - Kyushu Journal of Mathematics

SN - 1340-6116

IS - 1

ER -