Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis

Vellaichamy Balakumar, Manivannan Ramalingam, Karthikeyan Sekar, Chitiphon Chuaicham, Keiko Sasaki

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Metal-free photocatalysts are widely used to decontaminate aqueous solutions by eliminating toxic and non-biodegradable compounds. It is desirable to develop a photocatalyst with high charge separation and migration efficiency. The addition of carbon quantum dots (CQDs) to graphitic carbon nitride with polyaniline (PANI) can improve its light absorption abilities and reduce the recombination of holes and electrons. In this study, a novel CQDs decorated on PANI with hollow porous graphitic carbon nitride (CN) was fabricated via an in situ polymerization followed by an ultra-sonication. The optimal CQDs–loaded CN-PANI nanocomposite exhibited the high visible light absorption with a high specific surface area. Furthermore, better photocatalytic degradation of ciprofloxacin (CIP) was achieved under the visible light. The improved photocatalytic activity of CN-PANI-CQDs (5.0%) can be attributed to its higher charge separation, and destruction of recombination rate through the heterojunction of excited electrons among CN, PANI, and CQDs. This effect was further confirmed by high photocurrent intensity, low photoluminescence emission, and electrical resistance. In addition, different parameters including catalyst weight, initial CIP concentration, and interfering effect of anions during CIP removal were investigated. The main active species in the degradation of CIP were identified to h+, •OH, and •O2 through the scavenger test. The high reusability and stability of the photocatalyst composite were also verified. The degradation intermediates and reaction pathways were identified. Furthermore, the effectiveness of the photocatalyst was evaluated using different toxic pollutants including imidacloprid, tetracycline, phenol, and rhodamine B under similar conditions. The CQDs–decorated CN-PANI was proved as a promising material for efficient photodegradation of toxic pollutants in water.

Original languageEnglish
Article number131739
JournalChemical Engineering Journal
Volume426
DOIs
Publication statusPublished - Dec 15 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis'. Together they form a unique fingerprint.

Cite this