Fabrication of a highly oriented line structure on an aluminum surface and the nanoscale patterning on the nanoscale structure using highly functional molecules

Y. Watanabe, H. Kato, S. Takemura, H. Watanabe, K. Hayakawa, S. Kimura, D. Okumura, T. Sugiyama, T. Hiramatsu, N. Nanba, O. Nishikawa, M. Taniguchi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The surface of an Al plate was treated with a combination of chemical and electrochemical processes for fabrication of surface nanoscale structures on Al plates. Chemical treatments by using acetone and pure water under supersonic waves were conducted on an Al surface. Additional electrochemical process in H2 S O4 solution created a finer and oriented nanoscale structure on the Al surface. Dynamic force microscopy (DFM) measurement clarified that the nanoscale highly oriented line structure was successfully created on the Al surface. The line distance was estimated approximately 30-40 nm. At the next stage, molecular patterning on the highly oriented line structure by functional molecules such as copper phthalocyanine (CuPc) and fullerene C60 was also conducted. CuPc or C60 molecules were deposited on the highly oriented line structure on Al. A toluene droplet containing CuPc molecules was cast on the nanostructured Al plate and was extended on the surface. CuPc or C60 deposition on the nanostructured Al surface proceeded by evaporation of toluene. DFM and x-ray photoemission spectroscopy measurements demonstrated that a unique molecular pattern was fabricated so that the highly oriented groove channels were filled with the functional molecules.

Original languageEnglish
Pages (from-to)793-798
Number of pages6
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume27
Issue number4
DOIs
Publication statusPublished - Jul 17 2009
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Fabrication of a highly oriented line structure on an aluminum surface and the nanoscale patterning on the nanoscale structure using highly functional molecules'. Together they form a unique fingerprint.

Cite this