Fabrication of ambipolar light-emitting transistor using high-photoluminescent organic single crystal

Satria Zulkarnaen Bisri, Taishi Takenobu, Yohei Yomogida, Takeshi Yamao, Masayuki Yahiro, Shu Hotta, Chihaya Adachi, Yoshihiro Iwasa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Organic single-crystal ambipolar light-emitting transistors show a great interest due to their unique features, spectral matching with their active material spectra and the quantum efficiency preservation during ambipolar operation at high current density operation in kA/cm2 order. The development of ambipolar light emitting transistor based on high photoluminescent material, α,ω-bis(biphenylyl)terthiophene (BP3T) single crystal is reported. By using bottom-gated top-contact configuration, with Ca and Au opposed metal electrodes, high value of hole and electron mobility were obtained. Extremely bright light emission observed during ambipolar operation shows prospect for electrically driven amplified spontaneous emission from organic materials.

Original languageEnglish
Title of host publicationOrganic Optoelectronics and Photonics III
Volume6999
DOIs
Publication statusPublished - Jun 30 2008
EventOrganic Optoelectronics and Photonics III - Strasbourg, France
Duration: Apr 7 2008Apr 10 2008

Other

OtherOrganic Optoelectronics and Photonics III
CountryFrance
CityStrasbourg
Period4/7/084/10/08

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Bisri, S. Z., Takenobu, T., Yomogida, Y., Yamao, T., Yahiro, M., Hotta, S., ... Iwasa, Y. (2008). Fabrication of ambipolar light-emitting transistor using high-photoluminescent organic single crystal. In Organic Optoelectronics and Photonics III (Vol. 6999). [69990Z] https://doi.org/10.1117/12.781126