Abstract
β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10 mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5 mol% DCPD-coated β-TCP granules, or approximately 27 mol% DCPD-coated β-TCP granules after 2 and 4 weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD.
Original language | English |
---|---|
Pages (from-to) | 1411-1419 |
Number of pages | 9 |
Journal | Materials Science and Engineering C |
Volume | 75 |
DOIs | |
Publication status | Published - Jun 1 2017 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering