Fabrication of TTF-TCNQ charge-transfer complex self-assembled monolayers: Comparison between the coadsorption method and the layer-by-layer adsorption method

Ryota Yuge, Akira Miyazaki, Toshiaki Enoki, Kaoru Tamada, Fumio Nakamura, Masahiko Hara

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

We propose a novel technique to fabricate self-assembled monolayers (SAMs) of 2D charge-transfer complexes by coadsorption of thiol-functionalized tetrathiafulvalene derivatives (TTF-CH2SH) with 7,7,8,8-tetracyano-quinodimethane (TCNQ) on a gold substrate. For the "coadsorption" method, the gold substrates are immersed into the TTF-CH2SH and TCNQ mixed acetonitrile solution under optimum conditions for TTF-TCNQ bulk crystalline growth. TTF-CH2SH/TCNQ SAMs are also prepared by the conventional "layer-by-layer" adsorption method to compare the film properties with those of the coadsorbed SAMs, where the gold substrates are exposed to TCNQ solution after TTF-CH2SH (single component) SAM formation. For both TTF-CH2SH/TCNQ SAMs, the adsorption process and the optical thickness are characterized by surface plasmon resonance (SPR) measurements. The coadsorbed TTF-CH2SH/TCNQ SAMs form slightly thicker films (15.9 Å) than do the SAMs prepared by the layer-by-layer adsorption method (15.1 Å) because they incorporate the TCNQ molecules more efficiently in the film. The FTIR-RAS data reveal that all TCNQ molecules in the coadsorbed SAMs are in the mixed valence state, whereas no intermolecular charge transfer is present in the SAMs prepared by the layer-by-layer adsorption method. From the C≡N absorption bands in the IR spectra, the degree of charge transfer is estimated to ≃0.6 for the coadsorbed SAMs, which is comparable to the value for the bulk TTF-TCNQ crystals.

Original languageEnglish
Pages (from-to)6894-6901
Number of pages8
JournalJournal of Physical Chemistry B
Volume106
Issue number27
DOIs
Publication statusPublished - Jul 11 2002
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Fabrication of TTF-TCNQ charge-transfer complex self-assembled monolayers: Comparison between the coadsorption method and the layer-by-layer adsorption method'. Together they form a unique fingerprint.

Cite this