Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago

Rieko Urakawa, Nobuhito Ohte, Hideaki Shibata, Kazuo Isobe, Ryunosuke Tateno, Tomoki Oda, Takuo Hishi, Keitaro Fukushima, Yoshiyuki Inagaki, Keizo Hirai, Nobuhiro Oyanagi, Makoto Nakata, Hiroto Toda, Tanaka Kenta, Megumi Kuroiwa, Tsunehiro Watanabe, Karibu Fukuzawa, Naoko Tokuchi, Shin Ugawa, Tsutomu EnokiAsami Nakanishi, Nobuko Saigusa, Yukio Yamao, Ayumi Kotani

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Nitrogen (N) is the primary limiting nutrient for forest production. Therefore, understanding how environmental factors affect N transformation rates is essential for the provision of sustainable ecosystem services. Because these factors are interlinked, it is important to consider direct and indirect structural relationships to better understand the factors contributing to N transformations. In this study, we analyzed the structural cause-effect relationships surrounding N transformations by structural equation modeling using a database containing net and gross N transformation rates and related soil chemical properties from 38 sites across the Japanese archipelago. The average net N mineralization and nitrification rates in the Japanese forest soils were 0.62±0.68 and 0.59±0.65mgNkg-1d-1, respectively, and gross N mineralization and nitrification rates were 4.22±3.59 and 0.98±0.68mgNkg-1d-1, respectively. Compared with previous large scale studies, net and gross N transformation rates in Japanese forest soils were considerably diverse despite their relatively small land area and were representative of temperate forest ecosystems. Structural equation modeling analysis showed that net N transformations were directly affected by gross N transformations, which in turn were significantly and directly affected by soil organic matter contents. Soil organic matter was significantly affected by organic layer amount, tree species and soil group. The effect of soil group was the greatest among these factors, suggesting that soil organic matter contents in Japanese forest soils were mainly influenced by soil parent materials. This was especially evident for Andosols, which are derived from volcanic sediments and contain large amounts of soil organic matter leading to high N transformation rates in the Japanese forest soils. Among the factors related to organic layers and mineral soil layers, soil organic matter content and organic layer amount, which represent substrate availability, had significant effects on gross and net N transformation rates. However, by refining the scale of the dataset using soil groups/soil parent materials, the influence of substrate quality and soil chemical properties on N transformations was suggested. From the current dataset, it was indicated that soil parent materials were the most important factor controlling the pattern of N transformations in the soil of Japanese forest ecosystems. This conclusion should be repeatedly refined considering the spatial distribution of factors such as climatic conditions and forest types with additional site datasets obtained from future surveys.

Original languageEnglish
Pages (from-to)382-396
Number of pages15
JournalForest Ecology and Management
Volume361
DOIs
Publication statusPublished - Feb 1 2016

All Science Journal Classification (ASJC) codes

  • Forestry
  • Nature and Landscape Conservation
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of 'Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago'. Together they form a unique fingerprint.

  • Cite this

    Urakawa, R., Ohte, N., Shibata, H., Isobe, K., Tateno, R., Oda, T., Hishi, T., Fukushima, K., Inagaki, Y., Hirai, K., Oyanagi, N., Nakata, M., Toda, H., Kenta, T., Kuroiwa, M., Watanabe, T., Fukuzawa, K., Tokuchi, N., Ugawa, S., ... Kotani, A. (2016). Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management, 361, 382-396. https://doi.org/10.1016/j.foreco.2015.11.033