FakeSpotter: A simple yet robust baseline for spotting AI-synthesized fake faces

Run Wang, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yihao Huang, Jian Wang, Yang Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

In recent years, generative adversarial networks (GANs) and its variants have achieved unprecedented success in image synthesis. They are widely adopted in synthesizing facial images which brings potential security concerns to humans as the fakes spread and fuel the misinformation. However, robust detectors of these AI-synthesized fake faces are still in their infancy and are not ready to fully tackle this emerging challenge. In this work, we propose a novel approach, named FakeSpotter, based on monitoring neuron behaviors to spot AI-synthesized fake faces. The studies on neuron coverage and interactions have successfully shown that they can be served as testing criteria for deep learning systems, especially under the settings of being exposed to adversarial attacks. Here, we conjecture that monitoring neuron behavior can also serve as an asset in detecting fake faces since layer-by-layer neuron activation patterns may capture more subtle features that are important for the fake detector. Experimental results on detecting four types of fake faces synthesized with the state-of-the-art GANs and evading four perturbation attacks show the effectiveness and robustness of our approach.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3444-3451
Number of pages8
ISBN (Electronic)9780999241165
Publication statusPublished - 2020
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: Jan 1 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/1/21 → …

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'FakeSpotter: A simple yet robust baseline for spotting AI-synthesized fake faces'. Together they form a unique fingerprint.

Cite this