Fast gait parameter estimation for frontal view gait video data based on the model selection and parameter optimization approach

Kosuke Okusa, Toshinari Kamakura

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We study the problem of analyzing and classifying frontal view gait video data. In this study, we focus on the human walking speed and amplitude of arm swing and leg swing, we estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we apply our gait parameter estimation model for the human gait video data. As a result, our model is able to estimate the gait parameters by stably at low calculation cost.

Original languageEnglish
Pages (from-to)220-225
Number of pages6
JournalIAENG International Journal of Applied Mathematics
Volume43
Issue number4
Publication statusPublished - Nov 2013
Externally publishedYes

Fingerprint

Gait
Parameter Optimization
Model Selection
Parameter estimation
Parameter Estimation
Estimate
Registration
Costs
Modeling
Model
Demonstrate
Human

All Science Journal Classification (ASJC) codes

  • Applied Mathematics

Cite this

@article{b009c558c50e4f05944f08f0ddc4e8a8,
title = "Fast gait parameter estimation for frontal view gait video data based on the model selection and parameter optimization approach",
abstract = "We study the problem of analyzing and classifying frontal view gait video data. In this study, we focus on the human walking speed and amplitude of arm swing and leg swing, we estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we apply our gait parameter estimation model for the human gait video data. As a result, our model is able to estimate the gait parameters by stably at low calculation cost.",
author = "Kosuke Okusa and Toshinari Kamakura",
year = "2013",
month = "11",
language = "English",
volume = "43",
pages = "220--225",
journal = "IAENG International Journal of Applied Mathematics",
issn = "1992-9978",
publisher = "International Association of Engineers",
number = "4",

}

TY - JOUR

T1 - Fast gait parameter estimation for frontal view gait video data based on the model selection and parameter optimization approach

AU - Okusa, Kosuke

AU - Kamakura, Toshinari

PY - 2013/11

Y1 - 2013/11

N2 - We study the problem of analyzing and classifying frontal view gait video data. In this study, we focus on the human walking speed and amplitude of arm swing and leg swing, we estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we apply our gait parameter estimation model for the human gait video data. As a result, our model is able to estimate the gait parameters by stably at low calculation cost.

AB - We study the problem of analyzing and classifying frontal view gait video data. In this study, we focus on the human walking speed and amplitude of arm swing and leg swing, we estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we apply our gait parameter estimation model for the human gait video data. As a result, our model is able to estimate the gait parameters by stably at low calculation cost.

UR - http://www.scopus.com/inward/record.url?scp=84890961360&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84890961360&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84890961360

VL - 43

SP - 220

EP - 225

JO - IAENG International Journal of Applied Mathematics

JF - IAENG International Journal of Applied Mathematics

SN - 1992-9978

IS - 4

ER -