Fast gait parameter estimation for frontal view gait video data based on the model selection and parameter optimization approach

Kosuke Okusa, Toshinari Kamakura

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We study the problem of analyzing and classifying frontal view gait video data. In this study, we focus on the human walking speed and amplitude of arm swing and leg swing, we estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we apply our gait parameter estimation model for the human gait video data. As a result, our model is able to estimate the gait parameters by stably at low calculation cost.

Original languageEnglish
Pages (from-to)220-225
Number of pages6
JournalIAENG International Journal of Applied Mathematics
Volume43
Issue number4
Publication statusPublished - Nov 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Applied Mathematics

Fingerprint Dive into the research topics of 'Fast gait parameter estimation for frontal view gait video data based on the model selection and parameter optimization approach'. Together they form a unique fingerprint.

Cite this