TY - JOUR
T1 - Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study
AU - Zanis, Prodromos
AU - Akritidis, Dimitris
AU - Georgoulias, K. Aristeidis
AU - Allen, J. Robert
AU - Bauer, E. Susanne
AU - Boucher, Olivier
AU - Cole, Jason
AU - Johnson, Ben
AU - Deushi, Makoto
AU - Michou, Martine
AU - Mulcahy, Jane
AU - Nabat, Pierre
AU - Olivié, Dirk
AU - Oshima, Naga
AU - Sima, Adriana
AU - Schulz, Michael
AU - Takemura, Toshihiko
AU - Tsigaridis, Konstantinos
N1 - Publisher Copyright:
© 2020 Copernicus GmbH. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7/17
Y1 - 2020/7/17
N2 - In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014. In response to the pattern of all aerosols effective radiative forcing (ERF), the fast temperature responses are characterized by cooling over the continental areas, especially in the Northern Hemisphere, with the largest cooling over East Asia and India, sulfate being the dominant aerosol surface temperature driver for present-day emissions. In the Arctic there is a warming signal for winter in the ensemble mean of fast temperature responses, but the model-to-model variability is large, and it is presumably linked to aerosol-induced circulation changes. The largest fast precipitation responses are seen in the tropical belt regions, generally characterized by a reduction over continental regions and presumably a southward shift of the tropical rain belt. This is a characteristic and robust feature among most models in this study, associated with weakening of the monsoon systems around the globe (Asia, Africa and America) in response to hemispherically asymmetric cooling from a Northern Hemisphere aerosol perturbation, forcing possibly the Intertropical Convergence Zone (ITCZ) and tropical precipitation to shift away from the cooled hemisphere despite that aerosols' effects on temperature and precipitation are only partly realized in these simulations as the sea surface temperatures are kept fixed. An interesting feature in aerosol-induced circulation changes is a characteristic dipole pattern with intensification of the Icelandic Low and an
AB - In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014. In response to the pattern of all aerosols effective radiative forcing (ERF), the fast temperature responses are characterized by cooling over the continental areas, especially in the Northern Hemisphere, with the largest cooling over East Asia and India, sulfate being the dominant aerosol surface temperature driver for present-day emissions. In the Arctic there is a warming signal for winter in the ensemble mean of fast temperature responses, but the model-to-model variability is large, and it is presumably linked to aerosol-induced circulation changes. The largest fast precipitation responses are seen in the tropical belt regions, generally characterized by a reduction over continental regions and presumably a southward shift of the tropical rain belt. This is a characteristic and robust feature among most models in this study, associated with weakening of the monsoon systems around the globe (Asia, Africa and America) in response to hemispherically asymmetric cooling from a Northern Hemisphere aerosol perturbation, forcing possibly the Intertropical Convergence Zone (ITCZ) and tropical precipitation to shift away from the cooled hemisphere despite that aerosols' effects on temperature and precipitation are only partly realized in these simulations as the sea surface temperatures are kept fixed. An interesting feature in aerosol-induced circulation changes is a characteristic dipole pattern with intensification of the Icelandic Low and an
UR - http://www.scopus.com/inward/record.url?scp=85090054475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090054475&partnerID=8YFLogxK
U2 - 10.5194/acp-20-8381-2020
DO - 10.5194/acp-20-8381-2020
M3 - Article
AN - SCOPUS:85090054475
SN - 1680-7316
VL - 20
SP - 8381
EP - 8404
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 14
ER -