Faster queries for longest substring palindrome after block edit

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Palindromes are important objects in strings which have been extensively studied from combinatorial, algorithmic, and bioinformatics points of views. Manacher [J. ACM 1975] proposed a seminal algorithm that computes the longest substring palindromes (LSPals) of a given string in O(n) time, where n is the length of the string. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(ℓ + log log n) time, after a substring in T is replaced by a string of arbitrary length ℓ. This outperforms the query algorithm proposed in our previous work [CPM 2018] that uses O(ℓ + log n) time for each query.

Original languageEnglish
Title of host publication30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
EditorsNadia Pisanti, Solon P. Pissis
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771030
DOIs
Publication statusPublished - Jun 1 2019
Event30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019 - Pisa, Italy
Duration: Jun 18 2019Jun 20 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume128
ISSN (Print)1868-8969

Conference

Conference30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
CountryItaly
CityPisa
Period6/18/196/20/19

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint Dive into the research topics of 'Faster queries for longest substring palindrome after block edit'. Together they form a unique fingerprint.

Cite this