Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA

Artur P. Deditius, Satoshi Utsunomiya, Rodney C. Ewing

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt% of WO3, 0.16-1.70 wt% of As2O3, 0.06-0.88 wt% of MoO3; whereas, the fine-grained uraninite retains 2.25-4.93 wt% of WO3, up to 5.76 wt% of MoO3, and 0.26-0.60 wt% of As2O3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO2+x and U4O9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U6+-phases.

Original languageEnglish
Pages (from-to)4954-4973
Number of pages20
JournalGeochimica et Cosmochimica Acta
Volume71
Issue number20
DOIs
Publication statusPublished - Oct 15 2007
Externally publishedYes

Fingerprint

uraninite
Trace Elements
Deposits
Textures
Spent fuels
Nuclear fuels
trace element
Bearings (structural)
Corrosion
Oxygen
Atoms
Zoning
Fission products
Electron probe microanalysis
Stoichiometry
Minerals
Impurities
texture
carbosulfan
cleavage

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology

Cite this

Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA. / Deditius, Artur P.; Utsunomiya, Satoshi; Ewing, Rodney C.

In: Geochimica et Cosmochimica Acta, Vol. 71, No. 20, 15.10.2007, p. 4954-4973.

Research output: Contribution to journalArticle

@article{66d72a05f2364afbb4723e100e3da494,
title = "Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA",
abstract = "Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt{\%} of WO3, 0.16-1.70 wt{\%} of As2O3, 0.06-0.88 wt{\%} of MoO3; whereas, the fine-grained uraninite retains 2.25-4.93 wt{\%} of WO3, up to 5.76 wt{\%} of MoO3, and 0.26-0.60 wt{\%} of As2O3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO2+x and U4O9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U6+-phases.",
author = "Deditius, {Artur P.} and Satoshi Utsunomiya and Ewing, {Rodney C.}",
year = "2007",
month = "10",
day = "15",
doi = "10.1016/j.gca.2007.08.008",
language = "English",
volume = "71",
pages = "4954--4973",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "20",

}

TY - JOUR

T1 - Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA

AU - Deditius, Artur P.

AU - Utsunomiya, Satoshi

AU - Ewing, Rodney C.

PY - 2007/10/15

Y1 - 2007/10/15

N2 - Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt% of WO3, 0.16-1.70 wt% of As2O3, 0.06-0.88 wt% of MoO3; whereas, the fine-grained uraninite retains 2.25-4.93 wt% of WO3, up to 5.76 wt% of MoO3, and 0.26-0.60 wt% of As2O3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO2+x and U4O9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U6+-phases.

AB - Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt% of WO3, 0.16-1.70 wt% of As2O3, 0.06-0.88 wt% of MoO3; whereas, the fine-grained uraninite retains 2.25-4.93 wt% of WO3, up to 5.76 wt% of MoO3, and 0.26-0.60 wt% of As2O3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO2+x and U4O9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U6+-phases.

UR - http://www.scopus.com/inward/record.url?scp=35448966586&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35448966586&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2007.08.008

DO - 10.1016/j.gca.2007.08.008

M3 - Article

AN - SCOPUS:35448966586

VL - 71

SP - 4954

EP - 4973

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 20

ER -