Fatigue crack retrofitting by closing crack surface

Zhiyuan YuanZhou, Bohai Ji, Zhongqiu Fu, Shigenobu Kainuma, Shigeaki Tsukamoto

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

This paper mainly focuses on the mechanism of fatigue crack retrofitting by closing crack surface, which has proved to be effective in numerous experiments. The process of crack-closure treatment was simulated by using finite-element approach, and its effect on the crack propagation behavior was discussed in detail. It is found that the crack surface after impact treatment will remain closed until the external stress becomes large enough, however, when it opens, it will propagate again according to the analysis of crack-tip opening displacement. The stress intensity factor is found to reduce after closing the crack surface, resulting in the retardation of crack propagation. An internal-eccentric crack model is proposed as an equivalent model to describe the crack profile after closing the crack surface. Numerical and experimental investigations both support the findings of the simulations. As a result, fatigue crack propagation can be delayed due to the crack surface closure effect, which is the intended purpose of the fatigue crack retrofitting process.

Original languageEnglish
Pages (from-to)229-237
Number of pages9
JournalInternational Journal of Fatigue
Volume119
DOIs
Publication statusPublished - Feb 2019

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Fatigue crack retrofitting by closing crack surface'. Together they form a unique fingerprint.

Cite this