Feasibility of anatomical feature points for the estimation of prostate locations in the Bayesian delineation frameworks for prostate cancer radiotherapy

Kenta Ninomiya, Hidetaka Arimura, Motoki Sasahara, Yudai Kai, Taka aki Hirose, Saiji Ohga

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study aimed to investigate the feasibility of anatomical feature points for the estimation of prostate locations in the Bayesian delineation frameworks for prostate cancer radiotherapy. The relationships between the reference centroids of prostate regions (CPRs) (prostate locations) and anatomical feature points were explored, and the most feasible anatomical feature points were selected based on the smallest location estimation errors of CPRs and the largest Dice’s similarity coefficient (DSC) between the reference and extracted prostates. The reference CPRs were calculated according to reference prostate contours determined by radiation oncologists. Five anatomical feature points were manually determined on a prostate, bladder, and rectum in a sagittal plane of a planning computed tomography image for each case. The CPRs were estimated using three machine learning architectures [artificial neural network, random forest, and support vector machine (SVM)], which learned the relationships between the reference CPRs and anatomical feature points. The CPRs were applied for placing a prostate probabilistic atlas at the coordinates and extracting prostate regions using a Bayesian delineation framework. The average estimation errors without and with SVM using three feature points, which indicated the best performance, were 5.6 ± 3.7 mm and 1.8 ± 1.0 mm, respectively (the smallest error) (p < 0.001). The average DSCs without and with SVM using the three feature points were 0.69 ± 0.13 and 0.82 ± 0.055, respectively (the highest DSC) (p < 0.001). The anatomical feature points may be feasible for the estimation of prostate locations, which can be applied to the general Bayesian delineation frameworks for prostate cancer radiotherapy.

Original languageEnglish
Pages (from-to)434-444
Number of pages11
JournalRadiological physics and technology
Volume11
Issue number4
DOIs
Publication statusPublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • Radiation
  • Physical Therapy, Sports Therapy and Rehabilitation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Feasibility of anatomical feature points for the estimation of prostate locations in the Bayesian delineation frameworks for prostate cancer radiotherapy'. Together they form a unique fingerprint.

Cite this