Field-induced magnetic order of Cs3Cr2Br9 and Cs3Cr2Cl9

T. Ziman, J. P. Boucher, Y. Inagaki, Y. Ajiro

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The magnetic dimer compounds Cs3Cr2Br9 and Cs3Cr2Cl9 are well characterized magnetic dimer compounds. In zero field the spin 3/2 moments are bound in an hexagonal lattice of magnetic singlets,1) but at finite magnetic fields there are transitions to field-induced magnetic phases. In the Bromide compound this transition occurs at sufficiently low fields, ∼ 1.5T, that neutron diffraction results can give details of the static and dynamic magnetic structure even in the field induced phase. High magnetic field measurements have been used to determine the equation of state up to saturation. In this paper we discuss different approaches to the calculation of the magnetization and transverse magnetic order in the two compounds. Compared to spin 1/2 dimer materials, such as TlCuCl3, the higher spin allows for more important effects of anisotropy, and the frustration, leads to possibily incommensurate order. Two main theoretical methods will be discussed: extension of the standard theory of Tachiki and Yamada for spin 1/2, to include anisotropy and mixing of higher levels, and an approach based on Bose-Einstein Condensation for the onset of magnetic order. This description must include frustration that gives a continuous degeneracy in momentum space to the condensing bosons.

Original languageEnglish
Pages (from-to)119-128
Number of pages10
Journaljournal of the physical society of japan
Volume74
Issue numberSUPPL.
DOIs
Publication statusPublished - Jan 1 2005

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Field-induced magnetic order of Cs<sub>3</sub>Cr<sub>2</sub>Br<sub>9</sub> and Cs<sub>3</sub>Cr<sub>2</sub>Cl<sub>9</sub>'. Together they form a unique fingerprint.

Cite this