### Abstract

We consider the problem of discovering the optimal pair of substring patterns with bounded distance α, from a given set S of strings. We study two kinds of pattern classes, one is in form p ∧_{α} q that are interpreted as cooperative patterns within α distance, and the other is in form p ∧_{α} ¬q representing competing patterns, with respect to S. We show an efficient algorithm to find the optimal pair of patterns in O(N^{2}) time using O(N) space. We also present an O(m ^{2}N^{2}) time and O(m^{2}N) space solution to a more difficult version of the optimal pattern pair discovery problem, where m denotes the number of strings in S.

Original language | English |
---|---|

Title of host publication | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |

Editors | Einoshin Suzuki, Setsuo Arikawa |

Publisher | Springer Verlag |

Pages | 32-46 |

Number of pages | 15 |

ISBN (Print) | 9783540233572 |

DOIs | |

Publication status | Published - Jan 1 2004 |

### Publication series

Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|

Volume | 3245 |

ISSN (Print) | 0302-9743 |

ISSN (Electronic) | 1611-3349 |

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Computer Science(all)

## Fingerprint Dive into the research topics of 'Finding optimal pairs of cooperative and competing patterns with bounded distance'. Together they form a unique fingerprint.

## Cite this

*Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*(pp. 32-46). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 3245). Springer Verlag. https://doi.org/10.1007/978-3-540-30214-8_3