Abstract
KAGRA is a second-generation interferometric gravitational-wave detector with 3 km arms constructed at Kamioka, Gifu, Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which reduces seismic motion at low frequencies and increases the stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we operated a 3 km Michelson interferometer with a cryogenic test mass for 10 d, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this 'bKAGRA Phase 1' operation. We have demonstrated the feasibility of 3 km interferometer alignment and control with cryogenic mirrors.
Original language | English |
---|---|
Article number | 165008 |
Journal | Classical and Quantum Gravity |
Volume | 36 |
Issue number | 16 |
DOIs | |
Publication status | Published - Jul 23 2019 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)
Fingerprint Dive into the research topics of 'First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. / Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Asada, H.; Aso, Y.; Atsuta, S.; Awai, K.; Bae, S.; Baiotti, L.; Barton, M. A.; Cannon, K.; Capocasa, E.; Chen, C. S.; Chiu, T. W.; Cho, K.; Chu, Y. K.; Craig, K.; Creus, W.; Doi, K.; Eda, K.; Enomoto, Y.; Flaminio, R.; Fujii, Y.; Fujimoto, M. K.; Fukunaga, M.; Fukushima, M.; Furuhata, T.; Hagiwara, A.; Haino, S.; Hasegawa, K.; Hashino, K.; Hayama, K.; Hirobayashi, S.; Hirose, E.; Hsieh, B. H.; Huang, C. Z.; Ikenoue, B.; Inoue, Y.; Ioka, K.; Itoh, Y.; Izumi, K.; Kaji, T.; Kajita, T.; Kakizaki, M.; Kamiizumi, M.; Kanbara, S.; Kanda, N.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kasuya, J.; Kataoka, Y.; Kawai, N.; Kawamura, S.; Kawasaki, T.; Kim, C.; Kim, J.; Kim, J. C.; Kim, W. S.; Kim, Y. M.; Kimura, N.; Kinugawa, T.; Kirii, S.; Kitaoka, Y.; Kitazawa, H.; Kojima, Y.; Kokeyama, K.; Komori, K.; Kong, A. K.H.; Kotake, K.; Kozu, R.; Kumar, R.; Kuo, H. S.; Kuroyanagi, S.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Leonardi, M.; Lin, C. Y.; Lin, F. L.; Liu, G. C.; Liu, Y.; Majorana, E.; Mano, S.; Marchio, M.; Matsui, T.; Matsushima, F.; Michimura, Y.; Mio, N.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyo, K.; Miyoki, S.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morozumi, T.; Murakami, I.; Musha, M.; Nagano, K.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, M.; Nakao, K.; Namai, Y.; Narikawa, T.; Naticchioni, L.; Nguyen Quynh, L.; Ni, W. T.; Nishizawa, A.; Obuchi, Y.; Ochi, T.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, K.; Ono, K.; Oohara, K.; Ooi, C. P.; Pan, S. S.; Park, J.; Pena Arellano, F. E.; Pinto, I.; Sago, N.; Saijo, M.; Saito, Y.; Saitou, S.; Sakai, K.; Sakai, Y.; Sakai, Y.; Sasai, M.; Sasaki, M.; Sasaki, Y.; Sato, N.; Sato, S.; Sato, T.; Sekiguchi, Y.; Seto, N.; Shibata, M.; Shimoda, T.; Shinkai, H.; Shishido, T.; Shoda, A.; Somiya, K.; Son, E. J.; Suemasa, A.; Suzuki, T.; Suzuki, T.; Tagoshi, H.; Tahara, H.; Takahashi, H.; Takahashi, R.; Takamori, A.; Takeda, H.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanioka, S.; Tapia San Martin, E. N.; Tatsumi, D.; Terashima, S.; Tomaru, T.; Tomura, T.; Travasso, F.; Tsubono, K.; Tsuchida, S.; Uchikata, N.; Uchiyama, T.; Ueda, A.; Uehara, T.; Ueki, S.; Ueno, K.; Uraguchi, F.; Ushiba, T.; Van Putten, M. H.P.M.; Vocca, H.; Wada, S.; Wakamatsu, T.; Watanabe, Y.; Xu, W. R.; Yamada, T.; Yamamoto, A.; Yamamoto, K.; Yamamoto, K.; Yamamoto, S.; Yamamoto, T.; Yokogawa, K.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yoshioka, T.; Yuzurihara, H.; Zeidler, S.; Zhu, Z. H.
In: Classical and Quantum Gravity, Vol. 36, No. 16, 165008, 23.07.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA
AU - Akutsu, T.
AU - Ando, M.
AU - Arai, K.
AU - Arai, Y.
AU - Araki, S.
AU - Araya, A.
AU - Aritomi, N.
AU - Asada, H.
AU - Aso, Y.
AU - Atsuta, S.
AU - Awai, K.
AU - Bae, S.
AU - Baiotti, L.
AU - Barton, M. A.
AU - Cannon, K.
AU - Capocasa, E.
AU - Chen, C. S.
AU - Chiu, T. W.
AU - Cho, K.
AU - Chu, Y. K.
AU - Craig, K.
AU - Creus, W.
AU - Doi, K.
AU - Eda, K.
AU - Enomoto, Y.
AU - Flaminio, R.
AU - Fujii, Y.
AU - Fujimoto, M. K.
AU - Fukunaga, M.
AU - Fukushima, M.
AU - Furuhata, T.
AU - Hagiwara, A.
AU - Haino, S.
AU - Hasegawa, K.
AU - Hashino, K.
AU - Hayama, K.
AU - Hirobayashi, S.
AU - Hirose, E.
AU - Hsieh, B. H.
AU - Huang, C. Z.
AU - Ikenoue, B.
AU - Inoue, Y.
AU - Ioka, K.
AU - Itoh, Y.
AU - Izumi, K.
AU - Kaji, T.
AU - Kajita, T.
AU - Kakizaki, M.
AU - Kamiizumi, M.
AU - Kanbara, S.
AU - Kanda, N.
AU - Kanemura, S.
AU - Kaneyama, M.
AU - Kang, G.
AU - Kasuya, J.
AU - Kataoka, Y.
AU - Kawai, N.
AU - Kawamura, S.
AU - Kawasaki, T.
AU - Kim, C.
AU - Kim, J.
AU - Kim, J. C.
AU - Kim, W. S.
AU - Kim, Y. M.
AU - Kimura, N.
AU - Kinugawa, T.
AU - Kirii, S.
AU - Kitaoka, Y.
AU - Kitazawa, H.
AU - Kojima, Y.
AU - Kokeyama, K.
AU - Komori, K.
AU - Kong, A. K.H.
AU - Kotake, K.
AU - Kozu, R.
AU - Kumar, R.
AU - Kuo, H. S.
AU - Kuroyanagi, S.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Leonardi, M.
AU - Lin, C. Y.
AU - Lin, F. L.
AU - Liu, G. C.
AU - Liu, Y.
AU - Majorana, E.
AU - Mano, S.
AU - Marchio, M.
AU - Matsui, T.
AU - Matsushima, F.
AU - Michimura, Y.
AU - Mio, N.
AU - Miyakawa, O.
AU - Miyamoto, A.
AU - Miyamoto, T.
AU - Miyo, K.
AU - Miyoki, S.
AU - Morii, W.
AU - Morisaki, S.
AU - Moriwaki, Y.
AU - Morozumi, T.
AU - Murakami, I.
AU - Musha, M.
AU - Nagano, K.
AU - Nagano, S.
AU - Nakamura, K.
AU - Nakamura, T.
AU - Nakano, H.
AU - Nakano, M.
AU - Nakao, K.
AU - Namai, Y.
AU - Narikawa, T.
AU - Naticchioni, L.
AU - Nguyen Quynh, L.
AU - Ni, W. T.
AU - Nishizawa, A.
AU - Obuchi, Y.
AU - Ochi, T.
AU - Oh, J. J.
AU - Oh, S. H.
AU - Ohashi, M.
AU - Ohishi, N.
AU - Ohkawa, M.
AU - Okutomi, K.
AU - Ono, K.
AU - Oohara, K.
AU - Ooi, C. P.
AU - Pan, S. S.
AU - Park, J.
AU - Pena Arellano, F. E.
AU - Pinto, I.
AU - Sago, N.
AU - Saijo, M.
AU - Saito, Y.
AU - Saitou, S.
AU - Sakai, K.
AU - Sakai, Y.
AU - Sakai, Y.
AU - Sasai, M.
AU - Sasaki, M.
AU - Sasaki, Y.
AU - Sato, N.
AU - Sato, S.
AU - Sato, T.
AU - Sekiguchi, Y.
AU - Seto, N.
AU - Shibata, M.
AU - Shimoda, T.
AU - Shinkai, H.
AU - Shishido, T.
AU - Shoda, A.
AU - Somiya, K.
AU - Son, E. J.
AU - Suemasa, A.
AU - Suzuki, T.
AU - Suzuki, T.
AU - Tagoshi, H.
AU - Tahara, H.
AU - Takahashi, H.
AU - Takahashi, R.
AU - Takamori, A.
AU - Takeda, H.
AU - Tanaka, H.
AU - Tanaka, K.
AU - Tanaka, T.
AU - Tanioka, S.
AU - Tapia San Martin, E. N.
AU - Tatsumi, D.
AU - Terashima, S.
AU - Tomaru, T.
AU - Tomura, T.
AU - Travasso, F.
AU - Tsubono, K.
AU - Tsuchida, S.
AU - Uchikata, N.
AU - Uchiyama, T.
AU - Ueda, A.
AU - Uehara, T.
AU - Ueki, S.
AU - Ueno, K.
AU - Uraguchi, F.
AU - Ushiba, T.
AU - Van Putten, M. H.P.M.
AU - Vocca, H.
AU - Wada, S.
AU - Wakamatsu, T.
AU - Watanabe, Y.
AU - Xu, W. R.
AU - Yamada, T.
AU - Yamamoto, A.
AU - Yamamoto, K.
AU - Yamamoto, K.
AU - Yamamoto, S.
AU - Yamamoto, T.
AU - Yokogawa, K.
AU - Yokoyama, J.
AU - Yokozawa, T.
AU - Yoon, T. H.
AU - Yoshioka, T.
AU - Yuzurihara, H.
AU - Zeidler, S.
AU - Zhu, Z. H.
N1 - Publisher Copyright: © 2019 IOP Publishing Ltd. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/7/23
Y1 - 2019/7/23
N2 - KAGRA is a second-generation interferometric gravitational-wave detector with 3 km arms constructed at Kamioka, Gifu, Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which reduces seismic motion at low frequencies and increases the stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we operated a 3 km Michelson interferometer with a cryogenic test mass for 10 d, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this 'bKAGRA Phase 1' operation. We have demonstrated the feasibility of 3 km interferometer alignment and control with cryogenic mirrors.
AB - KAGRA is a second-generation interferometric gravitational-wave detector with 3 km arms constructed at Kamioka, Gifu, Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which reduces seismic motion at low frequencies and increases the stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we operated a 3 km Michelson interferometer with a cryogenic test mass for 10 d, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this 'bKAGRA Phase 1' operation. We have demonstrated the feasibility of 3 km interferometer alignment and control with cryogenic mirrors.
UR - http://www.scopus.com/inward/record.url?scp=85072220386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072220386&partnerID=8YFLogxK
U2 - 10.1088/1361-6382/ab28a9
DO - 10.1088/1361-6382/ab28a9
M3 - Article
AN - SCOPUS:85072220386
VL - 36
JO - Classical and Quantum Gravity
JF - Classical and Quantum Gravity
SN - 0264-9381
IS - 16
M1 - 165008
ER -