Flexible-color tuning and white-light emission in three-, four-, and five-component host/guest co-crystals by charge-transfer emissions as well as effective energy transfers

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Three-, four-, and five-component host/guest crystals with multi-color and white light emission is described. Our strategy is based on the confinement of aromatic donor guests in supramolecular acceptor hosts. The supramolecular acceptor hosts (NDI-TPFB) were composed of N,N′-dipyrid-3-yl-1,4,5,8-naphthalenediimide (NDI) with two tris(pentafluorophenyl)borane (TPFB) linked by boron-nitrogen dative bonds as Lewis acid-base pairs, which spontaneously formed upon mixing the components. In the first part, a set of three-component crystals with 14 different aromatic guests were characterized to elucidate the structure-property relationships. In the latter part, a series of 17 types of four- and five-component crystals were formed with the use of binary or ternary guest inclusion systems, and their structural and photophysical properties were investigated. Among them, 14 types of crystals were formed effectively without destroying the crystal structure, as determined by X-ray diffraction and fluorescence microscopy. Notably, flexible color tuning, including white light emission, was realized by tuning the guest ratio and the combinations. Various intermolecular interactions such as C-H⋯F interactions, π-π stacking, charge-transfer interactions, and inclusion phenomena were important for forming the crystals. This approach that yields a rational solution of multicomponent crystals could be potentially useful for obtaining novel photofunctional solid-state systems.

Original languageEnglish
Pages (from-to)2829-2842
Number of pages14
JournalJournal of Materials Chemistry C
Volume7
Issue number10
DOIs
Publication statusPublished - Jan 1 2019

Fingerprint

Light emission
Energy transfer
Charge transfer
Tuning
Color
Crystals
Lewis Acids
Boron
Fluorescence microscopy
Nitrogen
Crystal structure
X ray diffraction
Acids

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Chemistry

Cite this

@article{49f597db08624d549a63e3cbb2e16caf,
title = "Flexible-color tuning and white-light emission in three-, four-, and five-component host/guest co-crystals by charge-transfer emissions as well as effective energy transfers",
abstract = "Three-, four-, and five-component host/guest crystals with multi-color and white light emission is described. Our strategy is based on the confinement of aromatic donor guests in supramolecular acceptor hosts. The supramolecular acceptor hosts (NDI-TPFB) were composed of N,N′-dipyrid-3-yl-1,4,5,8-naphthalenediimide (NDI) with two tris(pentafluorophenyl)borane (TPFB) linked by boron-nitrogen dative bonds as Lewis acid-base pairs, which spontaneously formed upon mixing the components. In the first part, a set of three-component crystals with 14 different aromatic guests were characterized to elucidate the structure-property relationships. In the latter part, a series of 17 types of four- and five-component crystals were formed with the use of binary or ternary guest inclusion systems, and their structural and photophysical properties were investigated. Among them, 14 types of crystals were formed effectively without destroying the crystal structure, as determined by X-ray diffraction and fluorescence microscopy. Notably, flexible color tuning, including white light emission, was realized by tuning the guest ratio and the combinations. Various intermolecular interactions such as C-H⋯F interactions, π-π stacking, charge-transfer interactions, and inclusion phenomena were important for forming the crystals. This approach that yields a rational solution of multicomponent crystals could be potentially useful for obtaining novel photofunctional solid-state systems.",
author = "Toshikazu Ono and Yoshio Hisaeda",
year = "2019",
month = "1",
day = "1",
doi = "10.1039/c8tc06165c",
language = "English",
volume = "7",
pages = "2829--2842",
journal = "Journal of Materials Chemistry C",
issn = "2050-7526",
publisher = "Royal Society of Chemistry",
number = "10",

}

TY - JOUR

T1 - Flexible-color tuning and white-light emission in three-, four-, and five-component host/guest co-crystals by charge-transfer emissions as well as effective energy transfers

AU - Ono, Toshikazu

AU - Hisaeda, Yoshio

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Three-, four-, and five-component host/guest crystals with multi-color and white light emission is described. Our strategy is based on the confinement of aromatic donor guests in supramolecular acceptor hosts. The supramolecular acceptor hosts (NDI-TPFB) were composed of N,N′-dipyrid-3-yl-1,4,5,8-naphthalenediimide (NDI) with two tris(pentafluorophenyl)borane (TPFB) linked by boron-nitrogen dative bonds as Lewis acid-base pairs, which spontaneously formed upon mixing the components. In the first part, a set of three-component crystals with 14 different aromatic guests were characterized to elucidate the structure-property relationships. In the latter part, a series of 17 types of four- and five-component crystals were formed with the use of binary or ternary guest inclusion systems, and their structural and photophysical properties were investigated. Among them, 14 types of crystals were formed effectively without destroying the crystal structure, as determined by X-ray diffraction and fluorescence microscopy. Notably, flexible color tuning, including white light emission, was realized by tuning the guest ratio and the combinations. Various intermolecular interactions such as C-H⋯F interactions, π-π stacking, charge-transfer interactions, and inclusion phenomena were important for forming the crystals. This approach that yields a rational solution of multicomponent crystals could be potentially useful for obtaining novel photofunctional solid-state systems.

AB - Three-, four-, and five-component host/guest crystals with multi-color and white light emission is described. Our strategy is based on the confinement of aromatic donor guests in supramolecular acceptor hosts. The supramolecular acceptor hosts (NDI-TPFB) were composed of N,N′-dipyrid-3-yl-1,4,5,8-naphthalenediimide (NDI) with two tris(pentafluorophenyl)borane (TPFB) linked by boron-nitrogen dative bonds as Lewis acid-base pairs, which spontaneously formed upon mixing the components. In the first part, a set of three-component crystals with 14 different aromatic guests were characterized to elucidate the structure-property relationships. In the latter part, a series of 17 types of four- and five-component crystals were formed with the use of binary or ternary guest inclusion systems, and their structural and photophysical properties were investigated. Among them, 14 types of crystals were formed effectively without destroying the crystal structure, as determined by X-ray diffraction and fluorescence microscopy. Notably, flexible color tuning, including white light emission, was realized by tuning the guest ratio and the combinations. Various intermolecular interactions such as C-H⋯F interactions, π-π stacking, charge-transfer interactions, and inclusion phenomena were important for forming the crystals. This approach that yields a rational solution of multicomponent crystals could be potentially useful for obtaining novel photofunctional solid-state systems.

UR - http://www.scopus.com/inward/record.url?scp=85062715261&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062715261&partnerID=8YFLogxK

U2 - 10.1039/c8tc06165c

DO - 10.1039/c8tc06165c

M3 - Article

AN - SCOPUS:85062715261

VL - 7

SP - 2829

EP - 2842

JO - Journal of Materials Chemistry C

JF - Journal of Materials Chemistry C

SN - 2050-7526

IS - 10

ER -