TY - JOUR
T1 - Flow analysis on microcasting with degassed polydimethylsiloxane micro-channels for cell patterning with cross-linked albumin
AU - Shen, Yigang
AU - Tanaka, Nobuyuki
AU - Yamazoe, Hironori
AU - Furutani, Shunsuke
AU - Nagai, Hidenori
AU - Kawai, Takayuki
AU - Tanaka, Yo
N1 - Publisher Copyright:
© 2020 Shen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/5
Y1 - 2020/5
N2 - Patterned cell culturing is one of the most useful techniques for understanding the interaction between geometric conditions surrounding cells and their behaviors. The authors previously proposed a simple method for cell patterning with an agarose gel microstructure fabricated by microcasting with a degassed polydimethylsiloxane (PDMS) mold. Although the vacuum pressure produced from the degassed PDMS can drive a highly viscous agarose solution, the influence of solution viscosity on the casting process is unknown. This study investigated the influences of micro-channel dimensions or solution viscosity on the flow of the solution in a micro-channel of a PDMS mold by both experiments and numerical simulation. It was found experimentally that the degassed PDMS mold was able to drive a solution with a viscosity under 575 mPa s. A simulation model was developed which can well estimate the flow rate in various dimensions of micro-channels. Cross-linked albumin has low viscosity (1 mPa s) in aqueous solution and can undergo a one-way dehydration process from solution to solid that produces cellular repellency after dehydration. A microstructure of cross-linked albumin was fabricated on a cell culture dish by the microcasting method. After cells were seeded and cultivated on the cell culture dish with the microstructure for 7 days, the cellular pattern of mouse skeletal myoblast cell line C2C12 was observed. The microcasting with cross-linked albumin solution enables preparation of patterned cell culture systems more quickly in comparison with the previous agarose gel casting, which requires a gelation process before the dehydration process.
AB - Patterned cell culturing is one of the most useful techniques for understanding the interaction between geometric conditions surrounding cells and their behaviors. The authors previously proposed a simple method for cell patterning with an agarose gel microstructure fabricated by microcasting with a degassed polydimethylsiloxane (PDMS) mold. Although the vacuum pressure produced from the degassed PDMS can drive a highly viscous agarose solution, the influence of solution viscosity on the casting process is unknown. This study investigated the influences of micro-channel dimensions or solution viscosity on the flow of the solution in a micro-channel of a PDMS mold by both experiments and numerical simulation. It was found experimentally that the degassed PDMS mold was able to drive a solution with a viscosity under 575 mPa s. A simulation model was developed which can well estimate the flow rate in various dimensions of micro-channels. Cross-linked albumin has low viscosity (1 mPa s) in aqueous solution and can undergo a one-way dehydration process from solution to solid that produces cellular repellency after dehydration. A microstructure of cross-linked albumin was fabricated on a cell culture dish by the microcasting method. After cells were seeded and cultivated on the cell culture dish with the microstructure for 7 days, the cellular pattern of mouse skeletal myoblast cell line C2C12 was observed. The microcasting with cross-linked albumin solution enables preparation of patterned cell culture systems more quickly in comparison with the previous agarose gel casting, which requires a gelation process before the dehydration process.
UR - http://www.scopus.com/inward/record.url?scp=85085157927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085157927&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0232518
DO - 10.1371/journal.pone.0232518
M3 - Article
C2 - 32433673
AN - SCOPUS:85085157927
SN - 1932-6203
VL - 15
JO - PLoS One
JF - PLoS One
IS - 5
M1 - e0232518
ER -