Abstract
A mononuclear Cr(V)-oxo complex, [CrV(O)(6-COO--tpa)](BF4)2 (1; 6-COO--tpa = N,N-bis(2-pyridylmethyl)-N-(6-carboxylato-2-pyridylmethyl)amine) was prepared through the reaction of a Cr(III) precursor complex with iodosylbenzene as an oxidant. Characterization of 1 was achieved using ESI-MS spectrometry, electron paramagnetic resonance, UV-vis, and resonance Raman spectroscopies. The reduction potential (Ered) of 1 was determined to be 1.23 V vs. SCE in acetonitrile based on analysis of the electron-transfer (ET) equilibrium between 1 and a one-electron donor, [RuII(bpy)3]2+ (bpy = 2,2′-bipyridine). The reorganization energy (λ) of 1 was also determined to be 1.03 eV in ET reactions from phenol derivatives to 1 on the basis of the Marcus theory of ET. The smaller λ value in comparison with that of an Fe(IV)-oxo complex (2.37 eV) is caused by the small structural change during ET due to the dπ character of the electron-accepting LUMO of 1. When benzyl alcohol derivatives (R-BA) with different oxidation potentials were employed as substrates, corresponding aldehydes were obtained as the 2e--oxidized products in moderate yields as determined from 1H NMR and GC-MS measurements. One-step UV-vis spectral changes were observed in the course of the oxidation reactions of BA derivatives by 1 and a kinetic isotope effect (KIE) was observed in the oxidation reactions for deuterated BA derivatives at the benzylic position as substrates. These results indicate that the rate-limiting step is a concerted proton-coupled electron transfer (PCET) from substrate to 1. In sharp contrast, in the oxidation of trimethoxy-BA (Eox = 1.22 V) by 1, trimethoxy-BA radical cation was observed by UV-vis spectroscopy. Thus, it was revealed that the mechanism of the oxidation reaction changed from one-step PCET to stepwise ET-proton transfer (ET/PT), depending on the redox potentials of R-BA.
Original language | English |
---|---|
Pages (from-to) | 945-955 |
Number of pages | 11 |
Journal | Chemical Science |
Volume | 6 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 1 2015 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Chemistry(all)
Cite this
Formation and characterization of a reactive chromium(V)-oxo complex : Mechanistic insight into hydrogen-atom transfer reactions. / Kotani, Hiroaki; Kaida, Suzue; Ishizuka, Tomoya; Sakaguchi, Miyuki; Ogura, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko.
In: Chemical Science, Vol. 6, No. 2, 01.02.2015, p. 945-955.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Formation and characterization of a reactive chromium(V)-oxo complex
T2 - Mechanistic insight into hydrogen-atom transfer reactions
AU - Kotani, Hiroaki
AU - Kaida, Suzue
AU - Ishizuka, Tomoya
AU - Sakaguchi, Miyuki
AU - Ogura, Takashi
AU - Shiota, Yoshihito
AU - Yoshizawa, Kazunari
AU - Kojima, Takahiko
PY - 2015/2/1
Y1 - 2015/2/1
N2 - A mononuclear Cr(V)-oxo complex, [CrV(O)(6-COO--tpa)](BF4)2 (1; 6-COO--tpa = N,N-bis(2-pyridylmethyl)-N-(6-carboxylato-2-pyridylmethyl)amine) was prepared through the reaction of a Cr(III) precursor complex with iodosylbenzene as an oxidant. Characterization of 1 was achieved using ESI-MS spectrometry, electron paramagnetic resonance, UV-vis, and resonance Raman spectroscopies. The reduction potential (Ered) of 1 was determined to be 1.23 V vs. SCE in acetonitrile based on analysis of the electron-transfer (ET) equilibrium between 1 and a one-electron donor, [RuII(bpy)3]2+ (bpy = 2,2′-bipyridine). The reorganization energy (λ) of 1 was also determined to be 1.03 eV in ET reactions from phenol derivatives to 1 on the basis of the Marcus theory of ET. The smaller λ value in comparison with that of an Fe(IV)-oxo complex (2.37 eV) is caused by the small structural change during ET due to the dπ character of the electron-accepting LUMO of 1. When benzyl alcohol derivatives (R-BA) with different oxidation potentials were employed as substrates, corresponding aldehydes were obtained as the 2e--oxidized products in moderate yields as determined from 1H NMR and GC-MS measurements. One-step UV-vis spectral changes were observed in the course of the oxidation reactions of BA derivatives by 1 and a kinetic isotope effect (KIE) was observed in the oxidation reactions for deuterated BA derivatives at the benzylic position as substrates. These results indicate that the rate-limiting step is a concerted proton-coupled electron transfer (PCET) from substrate to 1. In sharp contrast, in the oxidation of trimethoxy-BA (Eox = 1.22 V) by 1, trimethoxy-BA radical cation was observed by UV-vis spectroscopy. Thus, it was revealed that the mechanism of the oxidation reaction changed from one-step PCET to stepwise ET-proton transfer (ET/PT), depending on the redox potentials of R-BA.
AB - A mononuclear Cr(V)-oxo complex, [CrV(O)(6-COO--tpa)](BF4)2 (1; 6-COO--tpa = N,N-bis(2-pyridylmethyl)-N-(6-carboxylato-2-pyridylmethyl)amine) was prepared through the reaction of a Cr(III) precursor complex with iodosylbenzene as an oxidant. Characterization of 1 was achieved using ESI-MS spectrometry, electron paramagnetic resonance, UV-vis, and resonance Raman spectroscopies. The reduction potential (Ered) of 1 was determined to be 1.23 V vs. SCE in acetonitrile based on analysis of the electron-transfer (ET) equilibrium between 1 and a one-electron donor, [RuII(bpy)3]2+ (bpy = 2,2′-bipyridine). The reorganization energy (λ) of 1 was also determined to be 1.03 eV in ET reactions from phenol derivatives to 1 on the basis of the Marcus theory of ET. The smaller λ value in comparison with that of an Fe(IV)-oxo complex (2.37 eV) is caused by the small structural change during ET due to the dπ character of the electron-accepting LUMO of 1. When benzyl alcohol derivatives (R-BA) with different oxidation potentials were employed as substrates, corresponding aldehydes were obtained as the 2e--oxidized products in moderate yields as determined from 1H NMR and GC-MS measurements. One-step UV-vis spectral changes were observed in the course of the oxidation reactions of BA derivatives by 1 and a kinetic isotope effect (KIE) was observed in the oxidation reactions for deuterated BA derivatives at the benzylic position as substrates. These results indicate that the rate-limiting step is a concerted proton-coupled electron transfer (PCET) from substrate to 1. In sharp contrast, in the oxidation of trimethoxy-BA (Eox = 1.22 V) by 1, trimethoxy-BA radical cation was observed by UV-vis spectroscopy. Thus, it was revealed that the mechanism of the oxidation reaction changed from one-step PCET to stepwise ET-proton transfer (ET/PT), depending on the redox potentials of R-BA.
UR - http://www.scopus.com/inward/record.url?scp=84921668381&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921668381&partnerID=8YFLogxK
U2 - 10.1039/c4sc02285h
DO - 10.1039/c4sc02285h
M3 - Article
AN - SCOPUS:84921668381
VL - 6
SP - 945
EP - 955
JO - Chemical Science
JF - Chemical Science
SN - 2041-6520
IS - 2
ER -