Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and 2H NMR Spectra

Tomokazu Yasuda, Nobuaki Matsumori, Hiroshi Tsuchikawa, Max Lönnfors, Thomas K.M. Nyholm, J. Peter Slotte, Michio Murata

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

In this study, we measured the time-resolved fluorescence of trans-parinaric acid (tPA), steady-state fluorescence anisotropy of diphenylhexatriene (DPH), and 2H NMR of 10,10-d2-stearoyl lipids in stearoyl sphingomyelin with cholesterol (SSM/Chol) and l-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine with Chol (PSPC/Chol) binary membranes. The results suggest that the membrane order obtained from the fluorescence experiments shows a similar temperature dependency as those of the 2H NMR data. More importantly, the time-resolved fluorescence data implied the presence of at least two types of domains, cholesterol-poor gel-like domains (CPGLD) and cholesterol-enriched liquid-ordered (Lo) domains. These domains appear on a nano-to-micro second time scale for both SSM-Chol and PSPC-Chol membranes. The relative size of the gel-like domain was also estimated from the temperature-dependent lifetime measurements and 2H NMR spectral changes. The results imply that the size of the gel-like domains is very small, probably on the nanometer scale, and smaller in SSM-Chol membrane than those in PSPC-Chol bilayers, which could account for the higher thermal stability of SM-Chol membranes. The present study demonstrates that gel-like nanodomains occur in SM-Chol binary membrane even with Chol content of over 33 mol %, which has been thought to consist exclusively of Lo phase, implying that not only Lo domains but also gel-like nanodomains are important for formation of lipid-ordered phase in SM-Chol and PC-Chol membranes.

Original languageEnglish
Pages (from-to)13783-13792
Number of pages10
JournalLangmuir
Volume31
Issue number51
DOIs
Publication statusPublished - Dec 29 2015

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and <sup>2</sup>H NMR Spectra'. Together they form a unique fingerprint.

  • Cite this