FoxO1 signaling plays a pivotal role in the cardiac telomere biology responses to calorie restriction

N. Makino, J. Oyama, Toyoki Maeda, Masamichi Koyanagi, Yoshihiro Higuchi, I. Shimokawa, N. Mori, T. Furuyama

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

This study examined whether the forkhead transcription factors of O group 1 (FoxO1) might be involved in telomere biology during calorie restriction (CR). We used FoxO1-knockout heterozygous mice (FoxO1+/−) and wild-type mice (WT) as a control. Both WT and FoxO1+/− were subjected to ad libitum (AL) feeding or 30 % CR compared to AL for 20 weeks from 15 weeks of age. The heart-to-body weight ratio, blood glucose, and serum lipid profiles were not different among all groups of mice at the end of the study. Telomere size was significantly lower in the FoxO1+/−-AL than the WT-AL, and telomere attrition was not observed in either WT-CR or FoxO1+/−-CR. Telomerase activity was elevated in the heart and liver of WT-CR, but not in those of FoxO1+/−-CR. The phosphorylation of Akt was inhibited and Sirt 1 was activated in heart tissues of WT-CR and FoxO1+/−-CR. However, the ratio of conjugated to cytosolic light chain 3 increased and the level of p62 decreased in WT-CR, but not in FoxO1+/−-CR. A marker of oxidative DNA damage, 8-OhdG, was significantly lower in WT-CR only. The level of MnSOD and eNOS increased, and the level of cleaved caspase-3 decreased in WT-CR, but not FoxO1+/−-CR. Echocardiography showed that the left ventricular end-diastolic and systolic dimensions were significantly lower in WT-CR or FoxO1+/−-CR than WT-AL or FoxO1+/−-AL, respectively. The present studies suggest that FoxO1 plays beneficial roles by inducing genes involved in telomerase activity, as well as anti-oxidant, autophagic, and anti-apoptotic genes under conditions of CR, and suggest that FoxO1 signaling may be an important mediator of metabolic equilibrium during CR.

Original languageEnglish
Pages (from-to)119-130
Number of pages12
JournalMolecular and cellular biochemistry
Volume412
Issue number1-2
DOIs
Publication statusPublished - Jan 1 2016

Fingerprint

Telomere
Telomerase
Genes
Forkhead Transcription Factors
Echocardiography
Phosphorylation
Oxidants
Caspase 3
Liver
Blood Glucose
Tissue
Lipids
DNA
Knockout Mice
DNA Damage
Body Weight

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology

Cite this

FoxO1 signaling plays a pivotal role in the cardiac telomere biology responses to calorie restriction. / Makino, N.; Oyama, J.; Maeda, Toyoki; Koyanagi, Masamichi; Higuchi, Yoshihiro; Shimokawa, I.; Mori, N.; Furuyama, T.

In: Molecular and cellular biochemistry, Vol. 412, No. 1-2, 01.01.2016, p. 119-130.

Research output: Contribution to journalArticle

Makino, N. ; Oyama, J. ; Maeda, Toyoki ; Koyanagi, Masamichi ; Higuchi, Yoshihiro ; Shimokawa, I. ; Mori, N. ; Furuyama, T. / FoxO1 signaling plays a pivotal role in the cardiac telomere biology responses to calorie restriction. In: Molecular and cellular biochemistry. 2016 ; Vol. 412, No. 1-2. pp. 119-130.
@article{10f36b69eafa43809cc370eaedce221e,
title = "FoxO1 signaling plays a pivotal role in the cardiac telomere biology responses to calorie restriction",
abstract = "This study examined whether the forkhead transcription factors of O group 1 (FoxO1) might be involved in telomere biology during calorie restriction (CR). We used FoxO1-knockout heterozygous mice (FoxO1+/−) and wild-type mice (WT) as a control. Both WT and FoxO1+/− were subjected to ad libitum (AL) feeding or 30 {\%} CR compared to AL for 20 weeks from 15 weeks of age. The heart-to-body weight ratio, blood glucose, and serum lipid profiles were not different among all groups of mice at the end of the study. Telomere size was significantly lower in the FoxO1+/−-AL than the WT-AL, and telomere attrition was not observed in either WT-CR or FoxO1+/−-CR. Telomerase activity was elevated in the heart and liver of WT-CR, but not in those of FoxO1+/−-CR. The phosphorylation of Akt was inhibited and Sirt 1 was activated in heart tissues of WT-CR and FoxO1+/−-CR. However, the ratio of conjugated to cytosolic light chain 3 increased and the level of p62 decreased in WT-CR, but not in FoxO1+/−-CR. A marker of oxidative DNA damage, 8-OhdG, was significantly lower in WT-CR only. The level of MnSOD and eNOS increased, and the level of cleaved caspase-3 decreased in WT-CR, but not FoxO1+/−-CR. Echocardiography showed that the left ventricular end-diastolic and systolic dimensions were significantly lower in WT-CR or FoxO1+/−-CR than WT-AL or FoxO1+/−-AL, respectively. The present studies suggest that FoxO1 plays beneficial roles by inducing genes involved in telomerase activity, as well as anti-oxidant, autophagic, and anti-apoptotic genes under conditions of CR, and suggest that FoxO1 signaling may be an important mediator of metabolic equilibrium during CR.",
author = "N. Makino and J. Oyama and Toyoki Maeda and Masamichi Koyanagi and Yoshihiro Higuchi and I. Shimokawa and N. Mori and T. Furuyama",
year = "2016",
month = "1",
day = "1",
doi = "10.1007/s11010-015-2615-8",
language = "English",
volume = "412",
pages = "119--130",
journal = "Molecular and Cellular Biochemistry",
issn = "0300-8177",
publisher = "Springer Netherlands",
number = "1-2",

}

TY - JOUR

T1 - FoxO1 signaling plays a pivotal role in the cardiac telomere biology responses to calorie restriction

AU - Makino, N.

AU - Oyama, J.

AU - Maeda, Toyoki

AU - Koyanagi, Masamichi

AU - Higuchi, Yoshihiro

AU - Shimokawa, I.

AU - Mori, N.

AU - Furuyama, T.

PY - 2016/1/1

Y1 - 2016/1/1

N2 - This study examined whether the forkhead transcription factors of O group 1 (FoxO1) might be involved in telomere biology during calorie restriction (CR). We used FoxO1-knockout heterozygous mice (FoxO1+/−) and wild-type mice (WT) as a control. Both WT and FoxO1+/− were subjected to ad libitum (AL) feeding or 30 % CR compared to AL for 20 weeks from 15 weeks of age. The heart-to-body weight ratio, blood glucose, and serum lipid profiles were not different among all groups of mice at the end of the study. Telomere size was significantly lower in the FoxO1+/−-AL than the WT-AL, and telomere attrition was not observed in either WT-CR or FoxO1+/−-CR. Telomerase activity was elevated in the heart and liver of WT-CR, but not in those of FoxO1+/−-CR. The phosphorylation of Akt was inhibited and Sirt 1 was activated in heart tissues of WT-CR and FoxO1+/−-CR. However, the ratio of conjugated to cytosolic light chain 3 increased and the level of p62 decreased in WT-CR, but not in FoxO1+/−-CR. A marker of oxidative DNA damage, 8-OhdG, was significantly lower in WT-CR only. The level of MnSOD and eNOS increased, and the level of cleaved caspase-3 decreased in WT-CR, but not FoxO1+/−-CR. Echocardiography showed that the left ventricular end-diastolic and systolic dimensions were significantly lower in WT-CR or FoxO1+/−-CR than WT-AL or FoxO1+/−-AL, respectively. The present studies suggest that FoxO1 plays beneficial roles by inducing genes involved in telomerase activity, as well as anti-oxidant, autophagic, and anti-apoptotic genes under conditions of CR, and suggest that FoxO1 signaling may be an important mediator of metabolic equilibrium during CR.

AB - This study examined whether the forkhead transcription factors of O group 1 (FoxO1) might be involved in telomere biology during calorie restriction (CR). We used FoxO1-knockout heterozygous mice (FoxO1+/−) and wild-type mice (WT) as a control. Both WT and FoxO1+/− were subjected to ad libitum (AL) feeding or 30 % CR compared to AL for 20 weeks from 15 weeks of age. The heart-to-body weight ratio, blood glucose, and serum lipid profiles were not different among all groups of mice at the end of the study. Telomere size was significantly lower in the FoxO1+/−-AL than the WT-AL, and telomere attrition was not observed in either WT-CR or FoxO1+/−-CR. Telomerase activity was elevated in the heart and liver of WT-CR, but not in those of FoxO1+/−-CR. The phosphorylation of Akt was inhibited and Sirt 1 was activated in heart tissues of WT-CR and FoxO1+/−-CR. However, the ratio of conjugated to cytosolic light chain 3 increased and the level of p62 decreased in WT-CR, but not in FoxO1+/−-CR. A marker of oxidative DNA damage, 8-OhdG, was significantly lower in WT-CR only. The level of MnSOD and eNOS increased, and the level of cleaved caspase-3 decreased in WT-CR, but not FoxO1+/−-CR. Echocardiography showed that the left ventricular end-diastolic and systolic dimensions were significantly lower in WT-CR or FoxO1+/−-CR than WT-AL or FoxO1+/−-AL, respectively. The present studies suggest that FoxO1 plays beneficial roles by inducing genes involved in telomerase activity, as well as anti-oxidant, autophagic, and anti-apoptotic genes under conditions of CR, and suggest that FoxO1 signaling may be an important mediator of metabolic equilibrium during CR.

UR - http://www.scopus.com/inward/record.url?scp=84958915088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84958915088&partnerID=8YFLogxK

U2 - 10.1007/s11010-015-2615-8

DO - 10.1007/s11010-015-2615-8

M3 - Article

VL - 412

SP - 119

EP - 130

JO - Molecular and Cellular Biochemistry

JF - Molecular and Cellular Biochemistry

SN - 0300-8177

IS - 1-2

ER -