Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen

Kentaro Wada, Junichiro Yamabe, Yuhei Ogawa, Osamu Takakuwa, Takashi Iijima, Hisao Matsunaga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The effect of hydrogen on the deformation and fracture behavior in pure Cu, pure Ni and Cu-Ni alloy was studied via tensile tests of H-charged, smooth and circumferentially-notched specimens at room temperature (RT) and 77 K. Hydrogendiffusion properties were determined by the desorption method. To obtain a uniform hydrogen concentration in the H-charged specimens, specimens were exposed to 100-MPa hydrogen gas at 543 K for 200 h, based on the determined hydrogen diffusivity. In tensile tests of smooth pure Ni and Cu-Ni alloy specimens at RT, common hydrogen effects were detected, namely, an increase in yield and flow stresses-a hardening effect; and a ductility loss that was accompanied by a change in fracture surface from ductile to brittle feature-an embrittling effect. With regard to the embrittling effect, the pure Ni and Cu-Ni alloy showed different fracture-surface morphologies at RT; the pure Ni showed an intergranular (IG) surface and the Cu-Ni alloy surface was flat. However, a number of IG cracks were detected beneath the fracture surfaces on the smooth Cu-Ni alloy. The tensile tests of the H-charged smooth specimens at 77 K yielded an IG surface for the pure Ni and a ductile fracture surface with dimples in the Cu-Ni alloy. In contrast, tensile tests of the Hcharged, notched specimens at RT demonstrated clear IG fractures for the pure Ni and Cu-Ni alloy. These facts indicate that IG cracking was the first step in the embrittling process for the pure Ni and Cu-Ni alloy, and IG cracking was accompanied by a large plastic deformation that formed the flat surface (unclear IG surface) for the smooth Cu-Ni alloy. Considering that the HE of both pure Ni and Cu-Ni alloy was related to IG cracking, possible mechanisms were discussed and tensile tests performed at 77 K suggested two possibilities: (I) interaction between hydrogen-moving dislocation is more important in the HE process of the Cu-Ni alloy compared to the pure Ni; (II) hydrogen transportation towards grain boundaries are required to cause the IG fracture in the Cu-Ni alloy.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858981
DOIs
Publication statusPublished - Jan 1 2019
EventASME 2019 Pressure Vessels and Piping Conference, PVP 2019 - San Antonio, United States
Duration: Jul 14 2019Jul 19 2019

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6B-2019
ISSN (Print)0277-027X

Conference

ConferenceASME 2019 Pressure Vessels and Piping Conference, PVP 2019
CountryUnited States
CitySan Antonio
Period7/14/197/19/19

Fingerprint

Tensile testing
Strain rate
Hydrogen
Temperature
Ductile fracture
Plastic flow
Surface morphology
Yield stress
Ductility
Hardening
Desorption
Plastic deformation
Grain boundaries
Cracks

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Cite this

Wada, K., Yamabe, J., Ogawa, Y., Takakuwa, O., Iijima, T., & Matsunaga, H. (2019). Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen. In Materials and Fabrication (American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP; Vol. 6B-2019). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/PVP2019-93477

Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen. / Wada, Kentaro; Yamabe, Junichiro; Ogawa, Yuhei; Takakuwa, Osamu; Iijima, Takashi; Matsunaga, Hisao.

Materials and Fabrication. American Society of Mechanical Engineers (ASME), 2019. (American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP; Vol. 6B-2019).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Wada, K, Yamabe, J, Ogawa, Y, Takakuwa, O, Iijima, T & Matsunaga, H 2019, Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen. in Materials and Fabrication. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, vol. 6B-2019, American Society of Mechanical Engineers (ASME), ASME 2019 Pressure Vessels and Piping Conference, PVP 2019, San Antonio, United States, 7/14/19. https://doi.org/10.1115/PVP2019-93477
Wada K, Yamabe J, Ogawa Y, Takakuwa O, Iijima T, Matsunaga H. Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen. In Materials and Fabrication. American Society of Mechanical Engineers (ASME). 2019. (American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP). https://doi.org/10.1115/PVP2019-93477
Wada, Kentaro ; Yamabe, Junichiro ; Ogawa, Yuhei ; Takakuwa, Osamu ; Iijima, Takashi ; Matsunaga, Hisao. / Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen. Materials and Fabrication. American Society of Mechanical Engineers (ASME), 2019. (American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP).
@inproceedings{deed81797206423a8cb8518c08e82fff,
title = "Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen",
abstract = "The effect of hydrogen on the deformation and fracture behavior in pure Cu, pure Ni and Cu-Ni alloy was studied via tensile tests of H-charged, smooth and circumferentially-notched specimens at room temperature (RT) and 77 K. Hydrogendiffusion properties were determined by the desorption method. To obtain a uniform hydrogen concentration in the H-charged specimens, specimens were exposed to 100-MPa hydrogen gas at 543 K for 200 h, based on the determined hydrogen diffusivity. In tensile tests of smooth pure Ni and Cu-Ni alloy specimens at RT, common hydrogen effects were detected, namely, an increase in yield and flow stresses-a hardening effect; and a ductility loss that was accompanied by a change in fracture surface from ductile to brittle feature-an embrittling effect. With regard to the embrittling effect, the pure Ni and Cu-Ni alloy showed different fracture-surface morphologies at RT; the pure Ni showed an intergranular (IG) surface and the Cu-Ni alloy surface was flat. However, a number of IG cracks were detected beneath the fracture surfaces on the smooth Cu-Ni alloy. The tensile tests of the H-charged smooth specimens at 77 K yielded an IG surface for the pure Ni and a ductile fracture surface with dimples in the Cu-Ni alloy. In contrast, tensile tests of the Hcharged, notched specimens at RT demonstrated clear IG fractures for the pure Ni and Cu-Ni alloy. These facts indicate that IG cracking was the first step in the embrittling process for the pure Ni and Cu-Ni alloy, and IG cracking was accompanied by a large plastic deformation that formed the flat surface (unclear IG surface) for the smooth Cu-Ni alloy. Considering that the HE of both pure Ni and Cu-Ni alloy was related to IG cracking, possible mechanisms were discussed and tensile tests performed at 77 K suggested two possibilities: (I) interaction between hydrogen-moving dislocation is more important in the HE process of the Cu-Ni alloy compared to the pure Ni; (II) hydrogen transportation towards grain boundaries are required to cause the IG fracture in the Cu-Ni alloy.",
author = "Kentaro Wada and Junichiro Yamabe and Yuhei Ogawa and Osamu Takakuwa and Takashi Iijima and Hisao Matsunaga",
year = "2019",
month = "1",
day = "1",
doi = "10.1115/PVP2019-93477",
language = "English",
series = "American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP",
publisher = "American Society of Mechanical Engineers (ASME)",
booktitle = "Materials and Fabrication",

}

TY - GEN

T1 - Fracture and deformation behavior in slow-strain-rate tensile testing of Cu-Ni alloy with internal hydrogen

AU - Wada, Kentaro

AU - Yamabe, Junichiro

AU - Ogawa, Yuhei

AU - Takakuwa, Osamu

AU - Iijima, Takashi

AU - Matsunaga, Hisao

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The effect of hydrogen on the deformation and fracture behavior in pure Cu, pure Ni and Cu-Ni alloy was studied via tensile tests of H-charged, smooth and circumferentially-notched specimens at room temperature (RT) and 77 K. Hydrogendiffusion properties were determined by the desorption method. To obtain a uniform hydrogen concentration in the H-charged specimens, specimens were exposed to 100-MPa hydrogen gas at 543 K for 200 h, based on the determined hydrogen diffusivity. In tensile tests of smooth pure Ni and Cu-Ni alloy specimens at RT, common hydrogen effects were detected, namely, an increase in yield and flow stresses-a hardening effect; and a ductility loss that was accompanied by a change in fracture surface from ductile to brittle feature-an embrittling effect. With regard to the embrittling effect, the pure Ni and Cu-Ni alloy showed different fracture-surface morphologies at RT; the pure Ni showed an intergranular (IG) surface and the Cu-Ni alloy surface was flat. However, a number of IG cracks were detected beneath the fracture surfaces on the smooth Cu-Ni alloy. The tensile tests of the H-charged smooth specimens at 77 K yielded an IG surface for the pure Ni and a ductile fracture surface with dimples in the Cu-Ni alloy. In contrast, tensile tests of the Hcharged, notched specimens at RT demonstrated clear IG fractures for the pure Ni and Cu-Ni alloy. These facts indicate that IG cracking was the first step in the embrittling process for the pure Ni and Cu-Ni alloy, and IG cracking was accompanied by a large plastic deformation that formed the flat surface (unclear IG surface) for the smooth Cu-Ni alloy. Considering that the HE of both pure Ni and Cu-Ni alloy was related to IG cracking, possible mechanisms were discussed and tensile tests performed at 77 K suggested two possibilities: (I) interaction between hydrogen-moving dislocation is more important in the HE process of the Cu-Ni alloy compared to the pure Ni; (II) hydrogen transportation towards grain boundaries are required to cause the IG fracture in the Cu-Ni alloy.

AB - The effect of hydrogen on the deformation and fracture behavior in pure Cu, pure Ni and Cu-Ni alloy was studied via tensile tests of H-charged, smooth and circumferentially-notched specimens at room temperature (RT) and 77 K. Hydrogendiffusion properties were determined by the desorption method. To obtain a uniform hydrogen concentration in the H-charged specimens, specimens were exposed to 100-MPa hydrogen gas at 543 K for 200 h, based on the determined hydrogen diffusivity. In tensile tests of smooth pure Ni and Cu-Ni alloy specimens at RT, common hydrogen effects were detected, namely, an increase in yield and flow stresses-a hardening effect; and a ductility loss that was accompanied by a change in fracture surface from ductile to brittle feature-an embrittling effect. With regard to the embrittling effect, the pure Ni and Cu-Ni alloy showed different fracture-surface morphologies at RT; the pure Ni showed an intergranular (IG) surface and the Cu-Ni alloy surface was flat. However, a number of IG cracks were detected beneath the fracture surfaces on the smooth Cu-Ni alloy. The tensile tests of the H-charged smooth specimens at 77 K yielded an IG surface for the pure Ni and a ductile fracture surface with dimples in the Cu-Ni alloy. In contrast, tensile tests of the Hcharged, notched specimens at RT demonstrated clear IG fractures for the pure Ni and Cu-Ni alloy. These facts indicate that IG cracking was the first step in the embrittling process for the pure Ni and Cu-Ni alloy, and IG cracking was accompanied by a large plastic deformation that formed the flat surface (unclear IG surface) for the smooth Cu-Ni alloy. Considering that the HE of both pure Ni and Cu-Ni alloy was related to IG cracking, possible mechanisms were discussed and tensile tests performed at 77 K suggested two possibilities: (I) interaction between hydrogen-moving dislocation is more important in the HE process of the Cu-Ni alloy compared to the pure Ni; (II) hydrogen transportation towards grain boundaries are required to cause the IG fracture in the Cu-Ni alloy.

UR - http://www.scopus.com/inward/record.url?scp=85075931298&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85075931298&partnerID=8YFLogxK

U2 - 10.1115/PVP2019-93477

DO - 10.1115/PVP2019-93477

M3 - Conference contribution

AN - SCOPUS:85075931298

T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

BT - Materials and Fabrication

PB - American Society of Mechanical Engineers (ASME)

ER -