Fracture behavior transition by change of strain rate in dislocation-induced Si steels

Takashi Mizuguchi, Rintaro Ueji, Hayato Miyagawa, Yasuhiro Tanaka, Kazunari Shinagawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The fracture behavior transition due to the change of strain rate in 5%Si magnetic steel with dislocation microstructures was studied. The Si steel was multi-passed rolled at 800°C to a various reductions up to 50%. The room temperature tensile deformation was conducted at various strain rates from 10-5/s to 100/s. All rolled steels were fractured in ductile manners with local elongation (necking) at slower strain rate. When strain rate was faster, the local elongation disappeared and the fracture manner was turned to brittle. The strain rate at which fracture mechanism changed from ductile to brittle increased with the increasing of the reduction. On the other hand, the almost fully recrystallized Si steel was fractured in the brittle manner at any strain rate and the transition strain rate was not found. The fractured tensile specimen with no local elongations contains deformation twins; whereas these deformation twins were not observed in the fractured specimen with local elongations. This result indicates that dislocation structure evolved during rolling suppressed the twinning and that the dislocation structure is effective for the enhancement of toughness in Si steel.

Original languageEnglish
Title of host publicationTHERMEC 2011
PublisherTrans Tech Publications Ltd
Pages2187-2192
Number of pages6
ISBN (Print)9783037853030
DOIs
Publication statusPublished - 2012
Externally publishedYes
Event7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011 - Quebec City, QC, Canada
Duration: Aug 1 2011Aug 5 2011

Publication series

NameMaterials Science Forum
Volume706-709
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011
CountryCanada
CityQuebec City, QC
Period8/1/118/5/11

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Fracture behavior transition by change of strain rate in dislocation-induced Si steels'. Together they form a unique fingerprint.

Cite this