Functional imaging with cellular resolution reveals precise microarchitecture in visual cortex

Kenichi Ohki, Sooyoung Chung, Yeang H. Ch'ng, Prakash Kara, R. Clay Reid

Research output: Contribution to journalReview articlepeer-review

867 Citations (Scopus)

Abstract

Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 μm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 μm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.

Original languageEnglish
Pages (from-to)597-603
Number of pages7
JournalNature
Volume433
Issue number7026
DOIs
Publication statusPublished - Feb 10 2005

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Functional imaging with cellular resolution reveals precise microarchitecture in visual cortex'. Together they form a unique fingerprint.

Cite this