Game theoretic analysis for two-sided matching with resource allocation

Kentaro Yahiro, Makoto Yokoo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we consider a student-project-resource matching-allocation problem, where students have preferences over projects and the projects have preferences over students. Although students are many-to-one matched to projects, indivisible resources are many-to-one allocated to projects whose capacities are endogenously determined by the resources allocated to them. Traditionally, this problem is decomposed into two separate problems: (1) resources are allocated to projects based on expectations (resource allocation problem), and (2) students are matched to projects based on the capacities determined in the previous problem (matching problem). Although both problems are well-understood, if the expectations used in the first are incorrect, we obtain a suboptimal outcome. Thus, this problem must be solved as a whole without dividing it in two parts. We show that no strategyproof mechanism satisfies fairness (i.e., no student has justified envy) and weak efficiency requirements on students' welfare. Given this impossibility result, we develop a new strategyproof mechanism that strikes a good balance between fairness and efficiency and assess it by experiments.

Original languageEnglish
Title of host publicationProceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
EditorsBo An, Amal El Fallah Seghrouchni, Gita Sukthankar
PublisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
Pages1548-1556
Number of pages9
ISBN (Electronic)9781450375184
Publication statusPublished - 2020
Event19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020 - Virtual, Auckland, New Zealand
Duration: May 19 2020 → …

Publication series

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Volume2020-May
ISSN (Print)1548-8403
ISSN (Electronic)1558-2914

Conference

Conference19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
Country/TerritoryNew Zealand
CityVirtual, Auckland
Period5/19/20 → …

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Game theoretic analysis for two-sided matching with resource allocation'. Together they form a unique fingerprint.

Cite this