### Abstract

The spatially homogeneous scalar-electrodynamics in two dimensions is a finite-dimensional nonlinear system with the U(1) gauge symmetry. A gauge invariant description of the dynamics is given. The largest Lyapunov exponent calculated numerically is invariant under the gauge transformation. A chaos-order transition takes place around m = 1.6, where m is the scalar mass.

Original language | English |
---|---|

Pages (from-to) | 301-305 |

Number of pages | 5 |

Journal | Physics Letters, Section A: General, Atomic and Solid State Physics |

Volume | 243 |

Issue number | 5-6 |

DOIs | |

Publication status | Published - Jul 6 1998 |

### All Science Journal Classification (ASJC) codes

- Physics and Astronomy(all)

## Fingerprint Dive into the research topics of 'Gauge invariant description of chaos in 2D scalar-electrodynamics'. Together they form a unique fingerprint.

## Cite this

Kaminaga, Y., Saito, Y., & Yahiro, M. (1998). Gauge invariant description of chaos in 2D scalar-electrodynamics.

*Physics Letters, Section A: General, Atomic and Solid State Physics*,*243*(5-6), 301-305. https://doi.org/10.1016/S0375-9601(98)00238-2