TY - JOUR
T1 - Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA
AU - Sato, Fuminori
AU - Kurokawa, Masatoshi
AU - Yamauchi, Nobuhiko
AU - Hattori, Masa Aki
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006
Y1 - 2006
N2 - Myostatin (GDF-8) is known to negatively regulate skeletal muscle mass in myogenesis, but few studies have been conducted on the function of endogenous GDF-8 in primary myoblasts. The present study was performed to assess the function of GDF-8 by RNA interference using primary culture of chicken embryonic myoblasts in which myoblasts were differentiated into myotubes. An active form of small interfering RNA (siRNA-1) targeting GDF-8 mRNA was introduced into myoblasts, and an inactive form of siRNA (siRNA-2) was used as a negative control. GDF-8 transcript level was significantly reduced 24 h after the introduction of siRNA-1 to 25% of the control, whereas a 52-kDa GDF-8 precursor was reduced to 45% of the control at 48 h. However, siRNA-2 did not decrease GDF-8 transcript level. When GDF-8-mediated promoter activity was measured chronologically by means of a pGL(CAGA)10-constructed luciferase reporter assay, a concomitant change in activity was initiated after 24 h. The activity rapidly decreased 30 h after siRNA-1 introduction, whereas high activity was maintained at 30-42 h in the control and siRNA-2-treated myoblasts. Myogenic factors such as MyoD and p21, but not myogenin, were altered after 72 h. Cell fusion of the multinucleated myotubes was delayed by the siRNA-1 introduction, and myotubes with aggregated nuclei were shorter and wider. These results strongly suggest that deficiency of GDF-8 delays cell differentiation and causes great alterations in the cellular morphology of chicken embryonic myotubes.
AB - Myostatin (GDF-8) is known to negatively regulate skeletal muscle mass in myogenesis, but few studies have been conducted on the function of endogenous GDF-8 in primary myoblasts. The present study was performed to assess the function of GDF-8 by RNA interference using primary culture of chicken embryonic myoblasts in which myoblasts were differentiated into myotubes. An active form of small interfering RNA (siRNA-1) targeting GDF-8 mRNA was introduced into myoblasts, and an inactive form of siRNA (siRNA-2) was used as a negative control. GDF-8 transcript level was significantly reduced 24 h after the introduction of siRNA-1 to 25% of the control, whereas a 52-kDa GDF-8 precursor was reduced to 45% of the control at 48 h. However, siRNA-2 did not decrease GDF-8 transcript level. When GDF-8-mediated promoter activity was measured chronologically by means of a pGL(CAGA)10-constructed luciferase reporter assay, a concomitant change in activity was initiated after 24 h. The activity rapidly decreased 30 h after siRNA-1 introduction, whereas high activity was maintained at 30-42 h in the control and siRNA-2-treated myoblasts. Myogenic factors such as MyoD and p21, but not myogenin, were altered after 72 h. Cell fusion of the multinucleated myotubes was delayed by the siRNA-1 introduction, and myotubes with aggregated nuclei were shorter and wider. These results strongly suggest that deficiency of GDF-8 delays cell differentiation and causes great alterations in the cellular morphology of chicken embryonic myotubes.
UR - http://www.scopus.com/inward/record.url?scp=33748414066&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748414066&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00543.2005
DO - 10.1152/ajpcell.00543.2005
M3 - Article
C2 - 16611734
AN - SCOPUS:33748414066
SN - 0363-6143
VL - 291
SP - C538-C545
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 3
ER -