Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

3D LiDAR sensors are indispensable for the robust vision of autonomous mobile robots. However, deploying LiDAR-based perception algorithms often fails due to a domain gap from the training environment, such as inconsistent angular resolution and missing properties. Existing studies have tackled the issue by learning inter-domain mapping, while the transferability is constrained by the training configuration and the training is susceptible to peculiar lossy noises called ray-drop. To address the issue, this paper proposes a generative model of LiDAR range images applicable to the data-level domain transfer. Motivated by the fact that LiDAR measurement is based on point-by-point range imaging, we train an implicit image representation-based generative adversarial networks along with a differentiable ray-drop effect. We demonstrate the fidelity and diversity of our model in comparison with the point-based and image-based state-of-the-art generative models. We also showcase upsampling and restoration applications. Furthermore, we introduce a Sim2Real application for LiDAR semantic segmentation. We demonstrate that our method is effective as a realistic ray-drop simulator and outperforms state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1256-1266
Number of pages11
ISBN (Electronic)9781665493468
DOIs
Publication statusPublished - 2023
Event23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
Duration: Jan 3 2023Jan 7 2023

Publication series

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Country/TerritoryUnited States
CityWaikoloa
Period1/3/231/7/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data'. Together they form a unique fingerprint.

Cite this