Geometrical control of a single DNA molecule translocation velocity in nanopore channels

Xiaoyin Sun, Takao Yasui, Sakon Rahong, Takeshi Yanagida, Noritada Kaji, Masaki Kanai, Kazuki Nagashima, Tomoji Kawai, Yoshinobu Baba

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The geometrical control of translocation velocity for single DNA molecules in nanoscale space was studied in this paper. We fabricated the nanopore channels which have 250 μm in length, 300 nm in width and 300 nm in depth for confinement of single DNA molecules, and measurement of single DNA molecules translocation velocities. Single DNA molecules translocation velocities in nanopore channels were controlled by fabricating the different nanostructures in front of nanopore channels, such as shallow channels and nanopillars. Based on these strategies, we successfully decreased the single DNA molecules translocation velocities to 7.7 ± 0.8×10-3 cm/s in nanopore channels.

Original languageEnglish
Title of host publication18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014
PublisherChemical and Biological Microsystems Society
Pages1338-1340
Number of pages3
ISBN (Electronic)9780979806476
Publication statusPublished - 2014
Event18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014 - San Antonio, United States
Duration: Oct 26 2014Oct 30 2014

Publication series

Name18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014

Other

Other18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014
CountryUnited States
CitySan Antonio
Period10/26/1410/30/14

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Geometrical control of a single DNA molecule translocation velocity in nanopore channels'. Together they form a unique fingerprint.

Cite this