TY - JOUR
T1 - Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients
T2 - Implications for diagnosis and etiology
AU - Velasco, Guillaume
AU - Walton, Emma L.
AU - Sterlin, Delphine
AU - Hédouin, Sabrine
AU - Nitta, Hirohisa
AU - Ito, Yuya
AU - Fouyssac, Fanny
AU - Mégarbané, André
AU - Sasaki, Hiroyuki
AU - Picard, Capucine
AU - Francastel, Claire
N1 - Funding Information:
The authors wish to thank all patients and family members for their participation in this study. We are grateful to Evani Viegas-Péquignot and Fabienne Nigon for assistance with registries and tissue collections collected in the frame of the previous “ICF consortium”, and to Florent Hubé for critical reading of the manuscript. This work was supported by ANR (Agence Nationale pour la Recherche; ANR-09-GENO-035); ELW was supported by the French Ministry of Research and Ligue Nationale Contre le Cancer.
PY - 2014/4/17
Y1 - 2014/4/17
N2 - Background: Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. Method. We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. Results: We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. Conclusions: Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust biomarkers identified in this study could be introduced into routine clinical immunology or neurology departments to facilitate testing of patients with suspected ICF syndrome. In addition, as exemplified by two patients with a combination of molecular defects never described before, our data support the search for new types of mutations at the origin of ICF syndrome.
AB - Background: Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. Method. We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. Results: We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. Conclusions: Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust biomarkers identified in this study could be introduced into routine clinical immunology or neurology departments to facilitate testing of patients with suspected ICF syndrome. In addition, as exemplified by two patients with a combination of molecular defects never described before, our data support the search for new types of mutations at the origin of ICF syndrome.
UR - http://www.scopus.com/inward/record.url?scp=84899978054&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899978054&partnerID=8YFLogxK
U2 - 10.1186/1750-1172-9-56
DO - 10.1186/1750-1172-9-56
M3 - Article
C2 - 24742017
AN - SCOPUS:84899978054
SN - 1750-1172
VL - 9
JO - Orphanet Journal of Rare Diseases
JF - Orphanet Journal of Rare Diseases
IS - 1
M1 - 56
ER -