Giant anisotropic thermal expansion actuated by thermodynamically assisted reorientation of imidazoliums in a single crystal

Zi Shuo Yao, Hanxi Guan, Yoshihito Shiota, Chun Ting He, Xiao Lei Wang, Shu Qi Wu, Xiaoyan Zheng, Sheng Qun Su, Kazunari Yoshizawa, Xueqian Kong, Osamu Sato, Jun Tao

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Materials demonstrating unusual large positive and negative thermal expansion are fascinating for their potential applications as high-precision microscale actuators and thermal expansion compensators for normal solids. However, manipulating molecular motion to execute huge thermal expansion of materials remains a formidable challenge. Here, we report a single-crystal Cu(II) complex exhibiting giant thermal expansion actuated by collective reorientation of imidazoliums. The circular molecular cations, which are rotationally disordered at a high temperature and statically ordered at a low temperature, demonstrate significant reorientation in the molecular planes. Such atypical molecular motion, revealed by variable-temperature single crystal X-ray diffraction and solid-state NMR analyses, drives an exceptionally large positive thermal expansion and a negative thermal expansion in a perpendicular direction of the crystal. The consequent large shape change (~10%) of bulk material, with remarkable durability, suggests that this complex is a strong candidate as a microscale thermal actuating material.

Original languageEnglish
Article number4805
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Giant anisotropic thermal expansion actuated by thermodynamically assisted reorientation of imidazoliums in a single crystal'. Together they form a unique fingerprint.

  • Cite this