Glacial-interglacial changes in organic carbon, nitrogen and sulfur accumulation in Lake Baikal sediment over the past 250 kyr

T. Watanabe, Hiroshi Naraoka, M. Nishimura, M. Kinoshita, T. Kawai

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The waters of modern Lake Baikal circulate well and maintain oxic conditions for the entire lake in spite of its great depth. Past oxic/anoxic conditions in the water column are not known. Because reconstruction of paleo-redox conditions involved with climate changes provides information on dynamics of lake water circulation and biological activity, high-resolution analyses of total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS) concentrations, and gamma ray density (GRD) were carried out using 492 sediment samples over the past 250 kyr (every other 1 cm from the 10 m core Ver98-1 St.5 taken from the Academician Ridge at 325 m water depth). Fifteen events of high TS/TOC ratio (>0.2 atomic) are observed; these are much larger than TS/TOC ratio of typical freshwater sediment (0.001-0.070) and also normal oxic marine sediments (0.13 in average). The sulfur occurs as pyrite by X-ray diffraction (XRD) analysis, probably being produced by sulfate-reducing bacteria (SRB). Such high TS/TOC ratios indicate high SRB activity in the lake and a high input of sulfate to the lake. A high TS/TOC layer often accompanies a decrease of TOC/TN ratio to ca. 5 (atomic). In particular, during a rapid cooling such as the Younger Dryas event, the TOC/TN ratio decreases steeply from 10.4 to 7.8 just prior to the increase of TS/TOC ratio from 0.02 to 0.55. Because the low TOC/TN ratio suggests low terrestrial organic matter contribution to the lake, saline water inflow from rivers could diminish to result in decreased water circulation in the lake. The rapid cooling event may restrict deep-water ventilation and create less oxic conditions in Lake Baikal.

Original languageEnglish
Pages (from-to)493-502
Number of pages10
JournalGEOCHEMICAL JOURNAL
Volume37
Issue number4
DOIs
Publication statusPublished - Jan 1 2003
Externally publishedYes

Fingerprint

Organic carbon
lakes
Sulfur
interglacial
total organic carbon
Lakes
lacustrine deposit
Sediments
sediments
Nitrogen
sulfur
organic carbon
nitrogen
carbon
Water
lake
water circulation
Sulfates
sulfates
sulfate-reducing bacterium

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Cite this

Glacial-interglacial changes in organic carbon, nitrogen and sulfur accumulation in Lake Baikal sediment over the past 250 kyr. / Watanabe, T.; Naraoka, Hiroshi; Nishimura, M.; Kinoshita, M.; Kawai, T.

In: GEOCHEMICAL JOURNAL, Vol. 37, No. 4, 01.01.2003, p. 493-502.

Research output: Contribution to journalArticle

@article{d00af36de2e44be582851147836ef843,
title = "Glacial-interglacial changes in organic carbon, nitrogen and sulfur accumulation in Lake Baikal sediment over the past 250 kyr",
abstract = "The waters of modern Lake Baikal circulate well and maintain oxic conditions for the entire lake in spite of its great depth. Past oxic/anoxic conditions in the water column are not known. Because reconstruction of paleo-redox conditions involved with climate changes provides information on dynamics of lake water circulation and biological activity, high-resolution analyses of total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS) concentrations, and gamma ray density (GRD) were carried out using 492 sediment samples over the past 250 kyr (every other 1 cm from the 10 m core Ver98-1 St.5 taken from the Academician Ridge at 325 m water depth). Fifteen events of high TS/TOC ratio (>0.2 atomic) are observed; these are much larger than TS/TOC ratio of typical freshwater sediment (0.001-0.070) and also normal oxic marine sediments (0.13 in average). The sulfur occurs as pyrite by X-ray diffraction (XRD) analysis, probably being produced by sulfate-reducing bacteria (SRB). Such high TS/TOC ratios indicate high SRB activity in the lake and a high input of sulfate to the lake. A high TS/TOC layer often accompanies a decrease of TOC/TN ratio to ca. 5 (atomic). In particular, during a rapid cooling such as the Younger Dryas event, the TOC/TN ratio decreases steeply from 10.4 to 7.8 just prior to the increase of TS/TOC ratio from 0.02 to 0.55. Because the low TOC/TN ratio suggests low terrestrial organic matter contribution to the lake, saline water inflow from rivers could diminish to result in decreased water circulation in the lake. The rapid cooling event may restrict deep-water ventilation and create less oxic conditions in Lake Baikal.",
author = "T. Watanabe and Hiroshi Naraoka and M. Nishimura and M. Kinoshita and T. Kawai",
year = "2003",
month = "1",
day = "1",
doi = "10.2343/geochemj.37.493",
language = "English",
volume = "37",
pages = "493--502",
journal = "Geochemical Journal",
issn = "0016-7002",
publisher = "The Physiological Society of Japan",
number = "4",

}

TY - JOUR

T1 - Glacial-interglacial changes in organic carbon, nitrogen and sulfur accumulation in Lake Baikal sediment over the past 250 kyr

AU - Watanabe, T.

AU - Naraoka, Hiroshi

AU - Nishimura, M.

AU - Kinoshita, M.

AU - Kawai, T.

PY - 2003/1/1

Y1 - 2003/1/1

N2 - The waters of modern Lake Baikal circulate well and maintain oxic conditions for the entire lake in spite of its great depth. Past oxic/anoxic conditions in the water column are not known. Because reconstruction of paleo-redox conditions involved with climate changes provides information on dynamics of lake water circulation and biological activity, high-resolution analyses of total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS) concentrations, and gamma ray density (GRD) were carried out using 492 sediment samples over the past 250 kyr (every other 1 cm from the 10 m core Ver98-1 St.5 taken from the Academician Ridge at 325 m water depth). Fifteen events of high TS/TOC ratio (>0.2 atomic) are observed; these are much larger than TS/TOC ratio of typical freshwater sediment (0.001-0.070) and also normal oxic marine sediments (0.13 in average). The sulfur occurs as pyrite by X-ray diffraction (XRD) analysis, probably being produced by sulfate-reducing bacteria (SRB). Such high TS/TOC ratios indicate high SRB activity in the lake and a high input of sulfate to the lake. A high TS/TOC layer often accompanies a decrease of TOC/TN ratio to ca. 5 (atomic). In particular, during a rapid cooling such as the Younger Dryas event, the TOC/TN ratio decreases steeply from 10.4 to 7.8 just prior to the increase of TS/TOC ratio from 0.02 to 0.55. Because the low TOC/TN ratio suggests low terrestrial organic matter contribution to the lake, saline water inflow from rivers could diminish to result in decreased water circulation in the lake. The rapid cooling event may restrict deep-water ventilation and create less oxic conditions in Lake Baikal.

AB - The waters of modern Lake Baikal circulate well and maintain oxic conditions for the entire lake in spite of its great depth. Past oxic/anoxic conditions in the water column are not known. Because reconstruction of paleo-redox conditions involved with climate changes provides information on dynamics of lake water circulation and biological activity, high-resolution analyses of total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS) concentrations, and gamma ray density (GRD) were carried out using 492 sediment samples over the past 250 kyr (every other 1 cm from the 10 m core Ver98-1 St.5 taken from the Academician Ridge at 325 m water depth). Fifteen events of high TS/TOC ratio (>0.2 atomic) are observed; these are much larger than TS/TOC ratio of typical freshwater sediment (0.001-0.070) and also normal oxic marine sediments (0.13 in average). The sulfur occurs as pyrite by X-ray diffraction (XRD) analysis, probably being produced by sulfate-reducing bacteria (SRB). Such high TS/TOC ratios indicate high SRB activity in the lake and a high input of sulfate to the lake. A high TS/TOC layer often accompanies a decrease of TOC/TN ratio to ca. 5 (atomic). In particular, during a rapid cooling such as the Younger Dryas event, the TOC/TN ratio decreases steeply from 10.4 to 7.8 just prior to the increase of TS/TOC ratio from 0.02 to 0.55. Because the low TOC/TN ratio suggests low terrestrial organic matter contribution to the lake, saline water inflow from rivers could diminish to result in decreased water circulation in the lake. The rapid cooling event may restrict deep-water ventilation and create less oxic conditions in Lake Baikal.

UR - http://www.scopus.com/inward/record.url?scp=0042624693&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042624693&partnerID=8YFLogxK

U2 - 10.2343/geochemj.37.493

DO - 10.2343/geochemj.37.493

M3 - Article

AN - SCOPUS:0042624693

VL - 37

SP - 493

EP - 502

JO - Geochemical Journal

JF - Geochemical Journal

SN - 0016-7002

IS - 4

ER -