Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals

Hajime Okamoto, Kaori Sato, Yuichiro Hagihara

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

We developed a new radar-lidar algorithm that can be applied to CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data to retrieve ice microphysics. The algorithm analyzes the specular reflection of lidar signals often observed by CALIPSO with large backscattering coefficients and small depolarization ratios. Analyses of CloudSat and CALIPSO data by our former radar-lidar algorithm showed problems retrieving ice cloud microphysics when specular reflection was present. We implemented additional look-up tables for horizontally oriented plates. A specular reflection mode in the radar-lidar algorithm could drastically improve retrieval results. The new radar-lidar algorithm requires depolarization ratios measured by CALIPSO, in addition to the radar reflectivity factor and backscattering coefficient at 532 nm. We performed several sensitivity studies to retrieval results. Nonsphericity turned out to be the largest source of uncertainties. Global analyses of ice microphysics for CloudSat-CALIPSO overlap regions were performed. The effective radius decreased as the altitude increased. The effective radius in the specular reflection ranged from 100 to 300 μm. The ice water content (IWC) ranged from 10-4 to several tenths of a gram per cubic meter. Both effective radius and IWC increased as the altitude (temperature) decreased (increased). The largest mixing ratio of oriented particles occurred between -20 and -5°C. The IWC had two maxima in the tropics above 15 km and around 5 km. We also examined the differences in ice microphysics over land and ocean. The effective radius was similar over land and ocean, but the IWC tended to be larger over land.

Original languageEnglish
Article numberD22209
JournalJournal of Geophysical Research Atmospheres
Volume115
Issue number22
DOIs
Publication statusPublished - Jan 1 2010

Fingerprint

CloudSat
CALIPSO
lidar
specular reflection
satellite observation
Ice
Optical radar
aerosols
Aerosols
optical radar
ice
Satellites
Infrared radiation
radar
Radar
water content
Water content
moisture content
radii
Depolarization

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

@article{b329edf7a97b4c80a2494005146cbdf6,
title = "Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals",
abstract = "We developed a new radar-lidar algorithm that can be applied to CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data to retrieve ice microphysics. The algorithm analyzes the specular reflection of lidar signals often observed by CALIPSO with large backscattering coefficients and small depolarization ratios. Analyses of CloudSat and CALIPSO data by our former radar-lidar algorithm showed problems retrieving ice cloud microphysics when specular reflection was present. We implemented additional look-up tables for horizontally oriented plates. A specular reflection mode in the radar-lidar algorithm could drastically improve retrieval results. The new radar-lidar algorithm requires depolarization ratios measured by CALIPSO, in addition to the radar reflectivity factor and backscattering coefficient at 532 nm. We performed several sensitivity studies to retrieval results. Nonsphericity turned out to be the largest source of uncertainties. Global analyses of ice microphysics for CloudSat-CALIPSO overlap regions were performed. The effective radius decreased as the altitude increased. The effective radius in the specular reflection ranged from 100 to 300 μm. The ice water content (IWC) ranged from 10-4 to several tenths of a gram per cubic meter. Both effective radius and IWC increased as the altitude (temperature) decreased (increased). The largest mixing ratio of oriented particles occurred between -20 and -5°C. The IWC had two maxima in the tropics above 15 km and around 5 km. We also examined the differences in ice microphysics over land and ocean. The effective radius was similar over land and ocean, but the IWC tended to be larger over land.",
author = "Hajime Okamoto and Kaori Sato and Yuichiro Hagihara",
year = "2010",
month = "1",
day = "1",
doi = "10.1029/2009JD013383",
language = "English",
volume = "115",
journal = "Journal of Geophysical Research",
issn = "0148-0227",
number = "22",

}

TY - JOUR

T1 - Global analysis of ice microphysics from CloudSat and CALIPSO

T2 - Incorporation of specular reflection in lidar signals

AU - Okamoto, Hajime

AU - Sato, Kaori

AU - Hagihara, Yuichiro

PY - 2010/1/1

Y1 - 2010/1/1

N2 - We developed a new radar-lidar algorithm that can be applied to CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data to retrieve ice microphysics. The algorithm analyzes the specular reflection of lidar signals often observed by CALIPSO with large backscattering coefficients and small depolarization ratios. Analyses of CloudSat and CALIPSO data by our former radar-lidar algorithm showed problems retrieving ice cloud microphysics when specular reflection was present. We implemented additional look-up tables for horizontally oriented plates. A specular reflection mode in the radar-lidar algorithm could drastically improve retrieval results. The new radar-lidar algorithm requires depolarization ratios measured by CALIPSO, in addition to the radar reflectivity factor and backscattering coefficient at 532 nm. We performed several sensitivity studies to retrieval results. Nonsphericity turned out to be the largest source of uncertainties. Global analyses of ice microphysics for CloudSat-CALIPSO overlap regions were performed. The effective radius decreased as the altitude increased. The effective radius in the specular reflection ranged from 100 to 300 μm. The ice water content (IWC) ranged from 10-4 to several tenths of a gram per cubic meter. Both effective radius and IWC increased as the altitude (temperature) decreased (increased). The largest mixing ratio of oriented particles occurred between -20 and -5°C. The IWC had two maxima in the tropics above 15 km and around 5 km. We also examined the differences in ice microphysics over land and ocean. The effective radius was similar over land and ocean, but the IWC tended to be larger over land.

AB - We developed a new radar-lidar algorithm that can be applied to CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data to retrieve ice microphysics. The algorithm analyzes the specular reflection of lidar signals often observed by CALIPSO with large backscattering coefficients and small depolarization ratios. Analyses of CloudSat and CALIPSO data by our former radar-lidar algorithm showed problems retrieving ice cloud microphysics when specular reflection was present. We implemented additional look-up tables for horizontally oriented plates. A specular reflection mode in the radar-lidar algorithm could drastically improve retrieval results. The new radar-lidar algorithm requires depolarization ratios measured by CALIPSO, in addition to the radar reflectivity factor and backscattering coefficient at 532 nm. We performed several sensitivity studies to retrieval results. Nonsphericity turned out to be the largest source of uncertainties. Global analyses of ice microphysics for CloudSat-CALIPSO overlap regions were performed. The effective radius decreased as the altitude increased. The effective radius in the specular reflection ranged from 100 to 300 μm. The ice water content (IWC) ranged from 10-4 to several tenths of a gram per cubic meter. Both effective radius and IWC increased as the altitude (temperature) decreased (increased). The largest mixing ratio of oriented particles occurred between -20 and -5°C. The IWC had two maxima in the tropics above 15 km and around 5 km. We also examined the differences in ice microphysics over land and ocean. The effective radius was similar over land and ocean, but the IWC tended to be larger over land.

UR - http://www.scopus.com/inward/record.url?scp=77957561437&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77957561437&partnerID=8YFLogxK

U2 - 10.1029/2009JD013383

DO - 10.1029/2009JD013383

M3 - Article

AN - SCOPUS:77957561437

VL - 115

JO - Journal of Geophysical Research

JF - Journal of Geophysical Research

SN - 0148-0227

IS - 22

M1 - D22209

ER -