Global mutations and local mutations have very different effects on evolution, illustrated by mixed strategies of asymmetric binary games

Takashi Uehara, Yoh Iwasa

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We study the evolutionary effect of rare mutations causing global changes in traits. We consider asymmetric binary games between two players. The first player takes two alternative options with probability x and 1-x; and the second player takes options with probability y and 1-y. Due to natural selection and recurrent mutation, the population evolves to have broad distributions of x and y. We analyze three cases showing qualitatively different dynamics, exemplified by (1) vigilance-intrusion game, (2) asymmetric hawk-dove game and (3) cleaner-client game. We found that the evolutionary outcome is strongly dependent upon the distribution of mutants' traits, more than the mutation rates. For example in the vigilance-intrusion game, the evolutionary dynamics show a perpetual stable oscillation if mutants are always close to the parent (local-mutation mode), whilst the population converges to a stable equilibrium distribution if mutants can be quite different from the parent (global-mutation mode), even for extremely low mutation rate. When common local mutations and rare global mutations occur simultaneously, the evolutionary outcome is controlled by the latter.

Original languageEnglish
Pages (from-to)223-231
Number of pages9
JournalJournal of Theoretical Biology
Volume262
Issue number2
DOIs
Publication statusPublished - Jan 21 2010

All Science Journal Classification (ASJC) codes

  • Medicine(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Modelling and Simulation
  • Statistics and Probability
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Global mutations and local mutations have very different effects on evolution, illustrated by mixed strategies of asymmetric binary games'. Together they form a unique fingerprint.

Cite this